
Audit
Bucket Protocol

Presented by:

OtterSec contact@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:Sud0u53r.ak@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-BKT-ADV-00 [crit] | Improper Conversion . 6
OS-BKT-ADV-01 [high] | Users Unable To Claim Surplus . 7
OS-BKT-ADV-02 [med] | Improper Tank Value Update . 8
OS-BKT-ADV-03 [med] | Improper Stake Update . 9
OS-BKT-ADV-04 [med] | Precision Loss In Redistribution . 10
OS-BKT-ADV-05 [low] | Improper Token Weight Calculation 11

05 General Findings 12
OS-BKT-SUG-00 | Unnecessary Extra Reference . 13
OS-BKT-SUG-01 | Round Up Fee Amount Calculations . 14
OS-BKT-SUG-02 | Use Of Hard-Coded Values . 15
OS-BKT-SUG-03 | Handle Zero Debt Case For TCR . 16
OS-BKT-SUG-04 | Avoid Precision Loss . 17

Appendices

A Vulnerability Rating Scale 18

B Procedure 19

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 19

01 | Executive Summary

Overview
Bucket Protocol engaged OtterSec to perform an assessment of the v1-core program. This assess-
ment was conducted between June 2nd and June 14th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 11 findings in total.

In particular, we have found issues related to improper amount conversions (OS-BKT-ADV-00), improper
updation of values (OS-BKT-ADV-02, OS-BKT-ADV-03), and precision loss issues (OS-BKT-ADV-04).

We also made recommendations around unnecessary reference borrowings (OS-BKT-SUG-00), avoiding
anti-patterns in the code (OS-BKT-SUG-02), and unnecessary precision losses (OS-BKT-SUG-04).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 19

02 | Scope
The source code was delivered to us in a git repository at github.com/Bucket-Protocol/v1-core. This audit
was performed against commit 0ad3cb5.

A brief description of the programs is as follows.

Name Description

v1-core CDP protocol built on Sui network where users may:
1. Deposit $SUI as collateral and borrow $BUCK.
2. Repay with $BUCK and take back collateral in the form of $SUI.
3. Redeem 1:1 value of $SUI from protocol using $BUCK.
4. Deposit $BUCK to tank to earn incentive token $BKT.
5. Provide liquidity for SUI/BUCK on DEX and also earn $BKT.
6. Stake $BKT to share protocol revenue, which comes from borrow fees, redemption fees,
and flash-loan fees.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/Bucket-Protocol/v1-core
https://github.com/Bucket-Protocol/v1-core/commit/0ad3cb5ad91bb56b560d73d81179f7ec6b1ce327

03 | Findings
Overall, we reported 11 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will help mitigate future vulnerabilities.

Severity Count

Critical 1
High 1

Medium 3
Low 1

Informational 5

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 19

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-BKT-ADV-00 Critical Resolved Conversion from debt amount to collateral amount is im-
proper.

OS-BKT-ADV-01 High Resolved Users are unable to claim surplus collateral from Bottles liq-
uidated in recovery mode.

OS-BKT-ADV-02 Medium Resolved Improper updation of start_s and start_g values in
ContributorToken leads to inconsistency.

OS-BKT-ADV-03 Medium Resolved The stake of the last Bottle is not updated, leading to incon-
sistency in stake amounts.

OS-BKT-ADV-04 Medium Resolved Precision loss in the redistribution of collateral and debt
amounts to users.

OS-BKT-ADV-05 Low Resolved Token weight is improperly calculated by unnecessarily re-
ducing the user’s compounded stake.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 19

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-00 [crit] | Improper Conversion

Description

record_repay_capped in the bottlemodule calculates the collateral amount returned for a given
debt amount.

protocol/sources/bottle.move RUST

public(friend) fun record_repay_capped<T>(bottle: &mut Bottle, repay_amount: u64,
oracle: &BucketOracle, clock: &Clock): (bool, u64) {↪→

if (repay_amount >= bottle.buck_amount) {
let (price, denominator) = bucket_oracle::get_price<T>(oracle, clock);
// collateral: at most 110% debt
let return_sui_amount = mul_factor(repay_amount * 110 / 100, denominator,
price);↪→

bottle.collateral_amount = bottle.collateral_amount - return_sui_amount;
bottle.buck_amount = 0;
// fully repaid
(true, return_sui_amount)

} else {
let return_sui_amount = mul_factor(bottle.collateral_amount, repay_amount,
bottle.buck_amount);↪→

bottle.collateral_amount = bottle.collateral_amount - return_sui_amount;
bottle.buck_amount = bottle.buck_amount - repay_amount;
// not fully repaid
(false, return_sui_amount)

}
}

If the debt amount (repay_amount) is greater than or equal to the Bottle debt, the collateral returned is
calculated as 1.1 times the debt amount. However, while converting the debt amount to the collateral
amount, the amount is not adjusted based on the decimals of the collateral token, leading to an improper
value of the collateral amount (return_sui_amount).

Remediation

Correctly convert the amount based on the decimals of the collateral token.

Patch

Fixed in 2b68221 by correctly calculating return_sui_amount.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 19

https://github.com/Bucket-Protocol/v1-core/commit/2b68221386775ebcf8391232b51dd5d2a4fc53c5

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-01 [high] | Users Unable To Claim Surplus

Description

record_repay_capped in the bottlemodule calculates the collateral amount to return for a given
debt amount.

protocol/sources/bottle.move RUST

if (repay_amount >= bottle.buck_amount) {
let (price, denominator) = bucket_oracle::get_price<T>(oracle, clock);
// collateral: at most 110% debt
let return_sui_amount = mul_factor(repay_amount * 110 / 100, denominator,

price);↪→

bottle.collateral_amount = bottle.collateral_amount - return_sui_amount;
bottle.buck_amount = 0;
// fully repaid
(true, return_sui_amount)

} else {

protocol/sources/bucket.move RUST

142 let bottle = bottle::borrow_bottle_mut(&mut bucket.bottle_table, debtor);
143 let (is_fully_repaid, return_amount) = bottle::record_repay_capped<T>(bottle,

buck_input_amount, oracle, clock);↪→

144 bottle::update_stake_and_total_stake_by_debtor(&mut bucket.bottle_table, debtor);
145 if (is_fully_repaid) {
146 bottle::destroy_bottle(&mut bucket.bottle_table, debtor);
147 };

When the debt amount (repay_amount) is greater than or equal to the Bottle debt, after calculating the
collateral amount to return, the bottle.collateral_amount subtracts from it and returns true.
That signifies the clearing of all debt. Now, the Bottle is destroyable. However, simply destroying the Bottle
deletes it from the Bottle table, which results in the user being unable to claim their surplus collateral
amount from the Bottle.

Remediation

Store the surplus amount in another field before destroying the Bottle to provide a way for the user to
claim their surplus collateral.

Patch

Fixed in 7b27bbf by adding another field to track the surplus amounts of users and providing a function
for users to collect their surplus amounts.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 19

https://github.com/Bucket-Protocol/v1-core/commit/7b27bbf6ca0632877924a7b040a84dc27a989786

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-02 [med]| Improper Tank Value Update

Description

claim_collateral in the tank module claims the collateral gained from the liquidations. After
claiming the collateral on a ContributorToken, start_s updates to indicate the claim of collateral
up to that point. However, while updating the value of start_s, its value is set to one less than the value
used for calculating the collateral_amount (excluding sec_portion).

protocol/sources/tank.move RUST

let sec_protion = *next_s_cache / constants::scale_factor();
let collateral_amount = mul_factor(

token.deposit_amount,
*s_cache - token.start_s + sec_protion,
token.start_p,

);
token.start_s = *s_cache;

Similarly, claim_bkt claims the Bucket rewards provided by the protocol to the Tank. After claiming
$BKT rewards on a ContributorToken, the start_g value becomes a value less than the value used
for calculating the bkt_output_amount (excluding sec_portion).

protocol/sources/tank.move RUST

let sec_protion = *next_g_cache / constants::scale_factor();
let bkt_output_amount = mul_factor(

token.deposit_amount,
*g_cache - token.start_g + sec_protion,
token.start_p,

);
token.start_g = *g_cache;

Remediation

Set the start_s and start_g to values used during the amount calculations (that includes the
sec_portion).

Patch

Fixed in dd49e5e.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 19

https://github.com/Bucket-Protocol/v1-core/commit/dd49e5e3796aeeff6f2737d41f37e56435c01e1d

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-03 [med]| Improper Stake Update

Description

handle_redeem in the bucketmodule handles the redemption of $BUCK by taking collateral from
the bottles in ascending order of their collateral ratio.

protocol/sources/bucket.move RUST

} else {
let redeemed_amount =

compute_buck_value_to_collateral(remaining_redemption_amount,
bucket.collateral_decimal, price, denominator);

↪→

↪→

bottle::record_redeem(&mut bottle, redeemed_amount,
remaining_redemption_amount);↪→

balance::join(&mut collateral_output, balance::split(&mut
bucket.collateral_vault, redeemed_amount));↪→

bottle::insert(&mut bucket.bottle_table, debtor, bottle, insertion_place);
remaining_redemption_amount = 0;
break

};
// update the debtor's stakes
bottle::update_stake_and_total_stake_by_debtor(&mut bucket.bottle_table, debtor);

When redeemingBottles, theelse case inside thewhile loophandles the lastBottle’s redemption. When
the remaining redemption amount is less than the Bottle’s buck amount, the loop ends in the else case
with a break and skips the call to bottle::update_stake_and_total_stake_by_debtor on
the last Bottle.

Remediation

Call bottle::update_stake_and_total_stake_by_debtor before the break statement in
the else case.

Patch

Fixed in 2b68221.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 19

https://github.com/Bucket-Protocol/v1-core/commit/2b68221386775ebcf8391232b51dd5d2a4fc53c5

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-04 [med]| Precision Loss In Redistribution

Description

record_redistribution in the bottlemodule handles the redistribution of collateral and debt
amounts to all Bottle users; this is done by dividing the collateral and debt amounts with the total stake
amount and adding it to the accumulators.

protocol/sources/bottle.move RUST

public(friend) fun record_redistribution(
table: &mut BottleTable,
collateral_amount: u64,
debt_amount: u64,

) {
table.reward_per_unit_stake = table.reward_per_unit_stake + collateral_amount /

table.total_stake;↪→

table.debt_per_unit_stake = table.debt_per_unit_stake + debt_amount /
table.total_stake;↪→

}

Since the accumulators are not factored by some value, directly dividing the collateral and debt amounts
with total stake leads to less precise rounded-down values, which the accumulators add and lead to
imprecise accumulation.

Remediation

Factor the collateral and debt accumulators with some value to avoid precision loss.

Patch

Fixed in b2daf7f.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 19

https://github.com/Bucket-Protocol/v1-core/commit/b2daf7f5ff69b155522a3a120e3385bf56be805d

Bucket Protocol Audit 04 | Vulnerabilities

OS-BKT-ADV-05 [low] | Improper Token Weight Calculation

Description

get_token_weight in the tankmodule calculates the weight of the user’s deposit. Calculating the
amount able to be withdrawn by the user uses this token weight.

protocol/sources/tank.move RUST

// TODO: check this line is necessary
if (compound_stake < token.deposit_amount/ constants::scale_factor()) {

return 0
};

(compound_stake)
}

In this function, if the total calculated compound_stake of the user for the two scales is less than
token.deposit_amount/constants::scale_factor() value, zero is returned. This results in
unnecessarily reducing the user’s compounded stake.

Remediation

Remove the if case that returns zero if the compound_stake is less than
token.deposit_amount/constants::scale_factor().

Patch

Fixed in 3a995b0.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 19

https://github.com/Bucket-Protocol/v1-core/commit/3a995b016e9988fe6e9ab7a6e925a4417dce73fb

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

ID Description

OS-BKT-SUG-00 Unnecessary extra reference for Bottle.

OS-BKT-SUG-01 Fee amounts should round up to avoid loss for protocol.

OS-BKT-SUG-02 Use of hard-coded values in the code base instead of obtaining them.

OS-BKT-SUG-03 Currently does not handle the case where total debt is zero while calculating TCR.

OS-BKT-SUG-04 Precision loss when calculating the remaining collateral amount.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 19

Bucket Protocol Audit 05 | General Findings

OS-BKT-SUG-00 | Unnecessary Extra Reference

Description

update_stake_and_total_stake_by_debtor in the bottlemodule borrows the reference for
Bottle twice, once each for getting and setting the stake amount. Avoid taking the reference twice by
taking the mutable reference once and using it to get and set the value of the stake amount for the bottle.

Remediation

Take the mutable reference once and use it to get and set the value of the stake amount for the bottle.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 19

Bucket Protocol Audit 05 | General Findings

OS-BKT-SUG-01 | Round Up Fee Amount Calculations

Description

When calculating the fee amounts inmultiple places in the code base,mul_factor is used. This function
rounds down the value by default. To avoid small losses for the protocol, round the values up when
calculating the fee amounts.

Remediation

Round up the values while calculating the fee amounts.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 19

Bucket Protocol Audit 05 | General Findings

OS-BKT-SUG-02 | Use Of Hard-Coded Values

Description

The code base uses hard-coded values like 110 (for MCR). In the future, if the constant value changes, it
would require the developer to change all the instances of the hard-coded values.

Remediation

Obtain values (such as MCR) programmatically and use that instead.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 19

Bucket Protocol Audit 05 | General Findings

OS-BKT-SUG-03 | Handle Zero Debt Case For TCR

Description

get_bucket_tcr in the bucketmodule gets the total collateral ratio of the Bucket. This function
does not handle the case where the total minted $BUCK amount (debt amount) is zero and raises an error.

Remediation

Handle the case where the debt amount is zero by returning constants::max_u64().

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 19

Bucket Protocol Audit 05 | General Findings

OS-BKT-SUG-04 | Avoid Precision Loss

Description

handle_redistribution in thebucketmodulehandles the collateral anddebt redistribution to the
users. The calculation of the remaining collateral after taking out the fee and rebate amount is improper,
giving less precise values.

Remediation

Calculate thecollateral_amountascollateral_amount - (2 * rebate_amount) toavoid
precision loss.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 19

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 19

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-BKT-ADV-00 [crit] | Improper Conversion
	OS-BKT-ADV-01 [high] | Users Unable To Claim Surplus
	OS-BKT-ADV-02 [med] | Improper Tank Value Update
	OS-BKT-ADV-03 [med] | Improper Stake Update
	OS-BKT-ADV-04 [med] | Precision Loss In Redistribution
	OS-BKT-ADV-05 [low] | Improper Token Weight Calculation

	General Findings
	OS-BKT-SUG-00 | Unnecessary Extra Reference
	OS-BKT-SUG-01 | Round Up Fee Amount Calculations
	OS-BKT-SUG-02 | Use Of Hard-Coded Values
	OS-BKT-SUG-03 | Handle Zero Debt Case For TCR
	OS-BKT-SUG-04 | Avoid Precision Loss

	Appendices
	Vulnerability Rating Scale
	Procedure

