
Hop Aggregator
Security Assessment

October 16th, 2024 — Prepared by OtterSec

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

Findings 3

Vulnerabilities 4

OS-HPA-ADV-00 | Flawed Version Validation Check 5

OS-HPA-ADV-01 | Prevention of Pool Closure Due to Rounding 6

General Findings 7

OS-HPA-SUG-00 | Unchecked Swap Fee Value 8

OS-HPA-SUG-01 | Setting Migration Time 9

Appendices

Vulnerability Rating Scale 10

Procedure 11

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 11

01 — Executive Summary

Overview

Hop Aggregator engaged OtterSec to assess the funfun program. This assessment was conducted

between August 24th and October 9th, 2024. For more information on our auditing methodology, refer to

Appendix B.

Key Findings

We produced 4 findings throughout this audit engagement.

In particular, we identified a vulnerability in the functionality responsible for asserting the configuration

version, where the two values in the expression are the same, resulting in the condition always evaluating

to true (OS-HPA-ADV-00). Furthermore, we highlighted the possibility where the pool closure may be

prevented due to improper rounding logic (OS-HPA-ADV-01).

We alsomade recommendations to incorporate a validation check to ensure that the swap fee is not set to an

excessively high value (OS-HPA-SUG-00) and suggested logging the migration time (OS-HPA-SUG-01).

Scope

The source code was delivered to us in a Git repository at https://github.com/hopaggregator/fun. This

audit was performed against commit 674c090.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

fun
It enables liquidity provision through a bonding curve mechanism, where

the price of tokens adjusts based on supply and demand dynamics.

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 11

https://github.com/hopaggregator/fun
https://github.com/hopaggregator/fun/commit/674c090311c69d6d9d00713072fa57c58e40c0d4

02 — Findings

Overall, we reported 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 1

MEDIUMMEDIUM 1

LOWLOW 0

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 11

03 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-HPA-ADV-00
HIGHHIGH RESOLVEDRESOLVED

enforce_config_versionenforce_config_version performs

a meaningless check by asserting

config.version >= config.versionconfig.version >= config.version ,

which is always true.

OS-HPA-ADV-01
MEDIUMMEDIUM RESOLVEDRESOLVED

The rounding down of both

max_amount_inmax_amount_in and amount_outamount_out
in buybuy may prevent the full drainage

of the pool, rendering it perpetually in the

POOL_STATUS_OPENPOOL_STATUS_OPEN state.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 11

Hop Aggregator Audit 03 — Vulnerabilities

Flawed Version Validation Check HIGHHIGH OS-HPA-ADV-00

Description

There is a logical flaw in meme::enforce_config_versionmeme::enforce_config_version . The current function does not enforce
any version check because it compares config.versionconfig.version with itself. Consequently, this expression will

always evaluate to true for any configuration value. As a result, this renders the check meaningless, as it

does not enforce any actual version comparison.

>_ contracts/hopfun/sources/meme.move rust

fun enforce_config_version(config: &MemeConfig) {
assert!(config.version >= config.version, EBadVersion);

}

Since the function is supposed to enforce a version check, its current behavior will allow outdated or

incompatible configurations to be utilized.

Remediation

Rewrite the version check to compare config.versionconfig.version to a valid threshold to ensure that only

configurations meeting the required version are accepted.

Patch

Fixed in 0923bc9.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 11

https://github.com/hopaggregator/fun/commit/0923bc967c07101a2d9a7fa53bf0ae1052636cbb

Hop Aggregator Audit 03 — Vulnerabilities

Prevention of Pool Closure Due to Rounding MEDIUMMEDIUM OS-HPA-ADV-01

Description

meme::get_amount_inmeme::get_amount_in calculates the maximum input (max_amount_inmax_amount_in) that may be provided to the
pool to purchase tokens. This calculation rounds down the result to ensure that the input amount does not

exceed the pool’s limits. After determining the actual input amount (amount_inamount_in), get_amount_outget_amount_out
computes how many tokens the user will receive from the pool. This result is also rounded down to ensure

that the user does not receive more tokens than the system allows.

>_ contracts/hopfun/sources/meme.move rust

fn earn_emissions(&mut self, vault: &Vault) {
// TODO - consider negative rates
let sy_balance = self.total_sy_balance(vault);
for (index, emission) in vault.emissions.iter().enumerate() {

let e = &mut self.emissions[index];
let earned_emission =

calc_share_value(e.last_seen_index, emission.final_index, sy_balance);
e.inc_staged(earned_emission);
e.last_seen_index = emission.last_seen_index;

}
}

Because both max_amount_inmax_amount_in and amount_outamount_out are rounded down, a situation may arise where the

pool’s max_amount_outmax_amount_out may never be fully extracted. This may result in the pool remaining perpetually

in the POOL_STATUS_OPENPOOL_STATUS_OPEN state even though the majority of its tokens have been sold.

Remediation

Ensure that rounding occurs only in one step.

Patch

Fixed in 0923bc9.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 11

https://github.com/hopaggregator/fun/commit/0923bc967c07101a2d9a7fa53bf0ae1052636cbb

04 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-HPA-SUG-00
update_swap_fee_bpsupdate_swap_fee_bps lacks a limit check, allowing excessively high fees that

may negatively impact users and the system.

OS-HPA-SUG-01 Suggestion to record the time at which the migration was reached.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 11

Hop Aggregator Audit 04 — General Findings

Unchecked Swap Fee Value OS-HPA-SUG-00

Description

meme::update_swap_fee_bpsmeme::update_swap_fee_bps allows an admin to update the swap_fee_bpsswap_fee_bps parameter of the

MemeConfigMemeConfig structure. However, it currently lacks any check to limit the maximum value of

swap_fee_bpsswap_fee_bps . Thus, it is possible to set it to more than 10000 bps (more than 100%). If an admin sets
the swap fee to an excessively high value, users attempting to perform swaps will receive no tokens in

return, resulting in a loss of their funds.

>_ contracts/hopfun/sources/meme.move rust

public fun update_swap_fee_bps(
_cap: &AdminCap,
config: &mut MemeConfig,
swap_fee_bps: u64,

) {
config.swap_fee_bps = swap_fee_bps;

}

Remediation

Add a validation check in update_swap_fee_bpsupdate_swap_fee_bps to ensure that swap_fee_bpsswap_fee_bps does not exceed the

predefined threshold of 10000 bps.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 11

Hop Aggregator Audit 04 — General Findings

Setting Migration Time OS-HPA-SUG-01

Description

Set curve.reached_migration_atcurve.reached_migration_at when the curve has reached migration within buybuy to record the

timestamp at which migration was reached.

Remediation

Implement the above suggestion.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 11

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 11

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 11

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	Vulnerabilities
	[8.75em][l]OS-HPA-ADV-00 | Flawed Version Validation Check
	[8.75em][l]OS-HPA-ADV-01 | Prevention of Pool Closure Due to Rounding

	General Findings
	[8.75em][l]OS-HPA-SUG-00 | Unchecked Swap Fee Value
	[8.75em][l]OS-HPA-SUG-01 | Setting Migration Time

	Appendices
	Vulnerability Rating Scale
	Procedure

