
Audit
Scallop

Presented by:

OtterSec contact@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Ilardi Marco goten@osec.io

Robert Chen r@osec.io

Sangsoo Kang sangsoo@osec.io

mailto:contact@osec.io
mailto:sud0u53r.ak@osec.io
mailto:goten@osec.io
mailto:r@osec.io
mailto:sangsoo@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-SCA-ADV-00 [low] | Lack Of Version Check . 6
OS-SCA-ADV-01 [low] | Incorrect Key Check . 7

05 General Findings 8
OS-SCA-SUG-00 | Avoid Unnecessary Operations . 10
OS-SCA-SUG-01 | Direct Field Access . 11
OS-SCA-SUG-02 | Eliminate Obsolete Constants . 12
OS-SCA-SUG-03 | Incorrect Assignment Of Function Parameters 13
OS-SCA-SUG-04 | Coin Type Not Required . 14
OS-SCA-SUG-05 | Optimize Zero Fixed Point . 15
OS-SCA-SUG-06 | Unnecessary Fields . 16
OS-SCA-SUG-07 | Remove Empty Balances . 18
OS-SCA-SUG-08 | Avoid Repeated Calls . 19
OS-SCA-SUG-09 | Missing Confidence Check . 20
OS-SCA-SUG-10 | Additional Checks To Avoid Reverts . 21
OS-SCA-SUG-11 | Incorrect Variable Names . 22
OS-SCA-SUG-12 | Division By Zero Error . 23
OS-SCA-SUG-13 | Share Price Manipulation . 24
OS-SCA-SUG-14 | Denial Of Service . 25

Appendices

A Vulnerability Rating Scale 26

B Procedure 27

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 27

01 | Executive Summary

Overview
Scallop engaged OtterSec to perform an assessment of the sui-lending-protocol program. This
assessment was conducted between July 3rd and July 15th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 17 findings in total.

In particular, we identified the absence of version validation (OS-SCA-ADV-00) and incorrect key verification
during the obligation lock process (OS-SCA-ADV-01).

We also made numerous suggestions around avoiding unnecessary operations (OS-SCA-SUG-00), directly
accessing fields for updating delay attributes (OS-SCA-SUG-01), and eliminating obsolete constants in the
codebase (OS-SCA-SUG-02).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 27

02 | Scope
The source code was delivered to us in a Git repository at github.com/scallop-io/sui-lending-protocol.
This audit was performed against commit 128ffbd.

A brief description of the programs is as follows.

Name Description

sui-lending-protocol A money market designed specifically for the Sui ecosystem with a dynamic
money market that offers high-interest lending, low-fee borrowing, an Auto-
mated Market Maker (AMM), and an asset management tool.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 27

https://github.com/scallop-io/sui-lending-protocol
https://github.com/scallop-io/sui-lending-protocol/commit/128ffbdf9bde3c3587391e5edcf74ecbc43e620c

03 | Findings
Overall, we reported 17 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will help mitigate future vulnerabilities.

Severity Count

Critical 0
High 0

Medium 0
Low 2

Informational 15

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 27

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-SCA-ADV-00 Low Resolved The functions in accrue_interest.move omit the ver-
sion check that prevents execution in the previous version.

OS-SCA-ADV-01 Low Resolved obligation::lock invokes an incorrect function for val-
idating the lock key.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 27

Scallop Audit 04 | Vulnerabilities

OS-SCA-ADV-00 [low] | Lack Of Version Check

Description

All user-callable functions performa version check to ensure they utilize themost recentmodulewhenever
the protocol undergoes an upgrade. However, the functions within accrue_interest.move do not
include this version validation, whichmay allow them to execute in their previous versions even after a
protocol upgrade.

Remediation

Insert a validation step to confirm the current version by calling assert_current_version.

accrue_interest.move DIFF

@@ -3,12 +3,16 @@ module protocol::accrue_interest {
+ use protocol::version::{Self, Version};

public fun accrue_interest_for_market(
+ version: &Version,

market: &mut Market,
clock: &Clock,

) {
+ version::assert_current_version(version);
+

let now = clock::timestamp_ms(clock) / 1000;
market::accrue_all_interests(market, now);

}
@@ -19,11 +23,14 @@ module protocol::accrue_interest {

public fun accrue_interest_for_market_and_obligation(
+ version: &Version,

market: &mut Market,
obligation: &mut Obligation,
clock: &Clock,

) {
- accrue_interest_for_market(market, clock);
+ version::assert_current_version(version);
+
+ accrue_interest_for_market(version, market, clock);

obligation::accrue_interests_and_rewards(obligation, market);
}

}

Patch

Fixed in f090a72.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 27

https://github.com/scallop-io/sui-lending-protocol/commit/f090a72780f25375d89ac1ce33d5d8b7620d79c7

Scallop Audit 04 | Vulnerabilities

OS-SCA-ADV-01 [low] | Incorrect Key Check

Description

obligation::lock is designed to lock the obligation functionality. Currently, the function invokes
assert_reward_key_in_store, which is inconsistent with its intended purpose. Instead,
assert_lock_key_in_store should be invoked, as the function should handle the locking of the
obligation, not the rewards management.

Remediation

Check if ObligationAccessStore contains lock_key instead of reward_key.

obligation.move DIFF

@@ -257,13 +257,13 @@ module protocol::obligation {
public fun lock<T: drop>(

// ...
- obligation_access::assert_reward_key_in_store(obligation_access_store, key);
+ obligation_access::assert_lock_key_in_store(obligation_access_store, key);

Patch

Fixed in f090a72.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 27

https://github.com/scallop-io/sui-lending-protocol/commit/f090a72780f25375d89ac1ce33d5d8b7620d79c7

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 27

Scallop Audit 05 | General Findings

ID Description

OS-SCA-SUG-00 Adding an else statement may remove the occurrence of unnecessary operations.

OS-SCA-SUG-01 The initialization of new_delaymay be avoided by directly updating the value of
the structure.

OS-SCA-SUG-02 Remove obsolete constants in the codebase for maintenance and clarity.

OS-SCA-SUG-03 lock_deposit_collateral and lock_withdraw_collateral are as-
signed incorrectly in obligation::lock.

OS-SCA-SUG-04 The coin type does not need to be stored.

OS-SCA-SUG-05 fixed_point32::zero invokes create_from_rational instead of
create_from_raw_value.

OS-SCA-SUG-06 Unnecessary fields in WitTable and AcTable.

OS-SCA-SUG-07 balance_bag holds empty balances without removing them.

OS-SCA-SUG-08 Optimize the process of liquidation of an obligation by avoiding repeated calls to
&get<DebtType>().

OS-SCA-SUG-09 pyth_rule::set_price does not check the confidence value returned from
pyth_adaptor::get_pyth_price.

OS-SCA-SUG-10 Add checks to avoid reverts in the future.

OS-SCA-SUG-11 Incorrect naming of variables in supra_registry::init.

OS-SCA-SUG-12 The current flash loan implementation may fail with a division by zero error if there
is no fee and no discount applied, since the fee calculation attempts to divide by
zero.

OS-SCA-SUG-13 Due to the presence of rounding attacks in the share price calculation of the vault, it
may allow for the manipulation of share values and prices.

OS-SCA-SUG-14 Anyone may deposit assets into an obligation, preventing its owner from borrowing
those assets due to whitelist restrictions, which could lead to denial of service or
griefing attacks.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-00 | Avoid Unnecessary Operations

Description

In incentive_rewards.move, set_reward_factor executes an unnecessary mutable borrow
operation on the reward_factors table, where a new coin_type has been introduced. This pro-
cedure is redundant, considering that the recently incorporated entry already possesses the correct
reward_factor value.

Remediation

Insert an else statement to avoid redundancy.

incentive_rewards.move DIFF

@@ -30,9 +30,9 @@ module protocol::incentive_rewards {
reward_factor: factor,

};
wit_table::add(RewardFactors{}, reward_factors, coin_type, reward_factor);

+ } else {
+ let reward_factor = wit_table::borrow_mut(RewardFactors{}, reward_factors,

coin_type);↪→

+ reward_factor.reward_factor = factor;
};

-
- let reward_factor = wit_table::borrow_mut(RewardFactors{}, reward_factors,

coin_type);↪→

- reward_factor.reward_factor = factor;
}

}

Patch

Fixed in d6d2de5.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 27

https://github.com/scallop-io/sui-lending-protocol/commit/d6d2de590c345bdf0bfd5a456f36c69f71f50a65

Scallop Audit 05 | General Findings

OS-SCA-SUG-01 | Direct Field Access

Description

In app.move, when updating the delay attributes of admin_cap, the current implementation involves
initializing a new variable new_delay and duplicating its value to change_delay. This occurs in three
functions:

1. extend_interest_model_change_delay.

2. extend_risk_model_change_delay.

3. extend_limiter_change_delay.

However, this step is unnecessary and may be optimized by directly increasing the delay values in
admin_cap, eliminating the requirement of the new_delay variable.

Remediation

Directly increase delay values in admin_capwithout utilizing new_delay.

app.move DIFF

@@ -56,24 +56,21 @@ module protocol::app {
admin_cap: &mut AdminCap,
delay: u64,

) {
- let new_delay = admin_cap.interest_model_change_delay + delay;
- admin_cap.interest_model_change_delay = new_delay;
+ admin_cap.interest_model_change_delay = admin_cap.interest_model_change_delay +

delay;↪→

public fun extend_risk_model_change_delay(
admin_cap: &mut AdminCap,
delay: u64,

) {
- let new_delay = admin_cap.risk_model_change_delay + delay;
- admin_cap.risk_model_change_delay = new_delay;
+ admin_cap.risk_model_change_delay = admin_cap.risk_model_change_delay + delay;

public fun extend_limiter_change_delay(
admin_cap: &mut AdminCap,
delay: u64,

) {
- let new_delay = admin_cap.limiter_change_delay + delay;
- admin_cap.limiter_change_delay = new_delay;
+ admin_cap.limiter_change_delay = admin_cap.limiter_change_delay + delay;

Patch

Fixed in 020bcae.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 27

https://github.com/scallop-io/sui-lending-protocol/commit/020bcae4ce887ea86e6b9fb1defcb2c0f957a2a2

Scallop Audit 05 | General Findings

OS-SCA-SUG-02 | Eliminate Obsolete Constants

Description

Several constants in the codebase are declared without being utilized. These unutilized constants may
confuse developers andmake the codebase harder to maintain. The constants in question are:

1. u64::DIVIDE_BY_ZERO.

2. pyth_rule::rule::U8_MAX.

3. cetus_adaptor::cetus_flash_loan::ERepayTypeIncorrect.

4. supra_rule::rule::U8_MAX.

5. supra_rule::rule::U64_MAX.

Remediation

Remove the aforementioned unutilized constants.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-03 | Incorrect Assignment Of Function Parameters

Description

In obligation.move, lock assigns:

1. lock_deposit_collateral to self.withdraw_collateral_locked.

2. lock_withdraw_collateral to self.deposit_collateral_locked.

This assignment is incorrect andmay result in unexpected consequences in the program’s execution.

Remediation

Update the assignments of lock_deposit_collateral and lock_withdraw_collateral in
lock.

obligation.move DIFF

@@ -20,9 +20,9 @@ public fun lock<T: drop>(
obligation_access::assert_reward_key_in_store(obligation_access_store, key);

self.lock_key = option::some(type_name::get<T>());
self.borrow_locked = lock_borrow;
self.repay_locked = lock_repay;

- self.withdraw_collateral_locked = lock_deposit_collateral;
- self.deposit_collateral_locked = lock_withdraw_collateral;
+ self.deposit_collateral_locked = lock_deposit_collateral;
+ self.withdraw_collateral_locked = lock_withdraw_collateral;

self.liquidate_locked = lock_liquidate;

Patch

Fixed in f090a72.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 27

https://github.com/scallop-io/sui-lending-protocol/commit/f090a72780f25375d89ac1ce33d5d8b7620d79c7

Scallop Audit 05 | General Findings

OS-SCA-SUG-04 | Coin Type Not Required

Description

Storing the coin type in incentive_rewards::RewardFactor is redundant, as the coin type al-
ready serves as the key for retrieving the reward factor from WitTable.

interest_model.move RUST

struct RewardFactor has store {
coin_type: TypeName,
reward_factor: FixedPoint32,
}

Remediation

Store the reward_factor directly in WitTable and remove the redundant coin type storage.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-05 | Optimize Zero Fixed Point

Description

In fixed_point32.move, zero creates a fixed point object representing zero utilizing
fixed_point32::create_from_rational(0, 1). However, a simpler approach exists.
fixed_point32::create_from_raw_value(0)may directly generate a fixed point object that
represents zero.

Remediation

Replace the fixed_point32::create_from_rational(0, 1) inside zerowith
fixed_point32::create_from_raw_value(0).

fixed_point32.move DIFF

@@ -10,7 +10,7 @@ public fun zero(): FixedPoint32 {
- fixed_point32::create_from_rational(0, 1)
+ fixed_point32::create_from_raw_value(0)

}

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-06 | Unnecessary Fields

Description

wit_table::WitTableandac_table::AcTable contain theunnecessary fieldwith_keys. The
existence of keys may be verified by checking whether the optional keys field is Some or None.

wit_table.move RUST

struct WitTable<phantom T: drop, K: copy + drop + store, phantom V: store> has
key, store {↪→

id: UID,
table: Table<K, V>,
keys: option::Option<VecSet<K>>,
with_keys: bool

}

ac_table.move RUST

struct AcTable<phantom T: drop, K: copy + drop + store, phantom V: store> has key,
store {↪→

id: UID,
table: Table<K, V>,
keys: option::Option<VecSet<K>>,
with_keys: bool

}

Also, theeffective_epoches field present in the following eventsmay be omitted since it is derivable
from the current_epoch and delay_epoches fields:

• InterestModelChangeCreated

• LimiterUpdateLimitChangeCreatedEvent

• LimiterUpdateParamsChangeCreatedEvent

• RiskModelChangeCreated

Remediation

Eliminate the with_keys field from wit_table::WitTable and ac_table::AcTable. Instead,
check for the existence of keys by evaluating the state of the optional keys field. Furthermore, remove the
effective_epoches field from:

• InterestModelChangeCreated

• LimiterUpdateLimitChangeCreatedEvent

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 27

Scallop Audit 05 | General Findings

• LimiterUpdateParamsChangeCreatedEvent

• RiskModelChangeCreated

Instead, derive it by utilizing the current_epoch and delay_epoches fields.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-07 | Remove Empty Balances

Description

obligation_collaterals::decrease removes collaterals that have a zero amount from
WitTable. On the other hand, balance_bag of obligation does not eliminate empty balances. To
maintain code consistency and ensure clarity, remove empty balances.

Remediation

Remove the empty balance of balance_bagwhen withdrawing the collateral from obligation.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-08 | Avoid Repeated Calls

Description

In liquidator.move, liquidate_obligation_with_cetus_pool_only_a and
liquidate_obligation_with_cetus_pool_only_beach invoke&get<DebtType>() twice.
Repeated function callsmay impact performance. Storing the result of&get<DebtType>() in a variable
and reusing it would enhance the efficiency of the code.

liquidator.move RUST

public fun liquidate_obligation_with_cetus_pool_only_a<DebtType, B>(
[...]

) {
/// Make sure the obligation has DebtType, and CollateralType
if (

vector::contains(&obligation::debt_types(obligation), &get<DebtType>()) ==
false ||↪→

vector::contains(&obligation::collateral_types(obligation),
&get<DebtType>()) == false↪→

)
[...]

public fun liquidate_obligation_with_cetus_pool_only_b<A, DebtType>(
[...]

) {
/// Make sure the obligation has DebtType, and CollateralType
if (

vector::contains(&obligation::debt_types(obligation), &get<DebtType>()) ==
false ||↪→

vector::contains(&obligation::collateral_types(obligation),
&get<DebtType>()) == false↪→

) return;

Remediation

Store the result of &get<DebtType>() in a variable to avoid repeated function calls.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-09 | Missing Confidence Check

Description

In pyth_rule::set_price, the confidence value returned from get_pyth_price is not validated.
While there is a check to confirm the primary oracle’s price against at least half of the secondary oracles’
prices, it is advisable to verify that the confidence level is not excessively high.

Remediation

Check that the returned value of confidence is not too high in pyth_rule::set_price.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-10 | Additional Checks To Avoid Reverts

Description

In interest_model::create_interest_model_change, it is advisable to include additional
checks to prevent potential reverts in the future, particularly those created by dividing by zero and
underflow errors.

Remediation

Integrate the following checks to prevent dividing by zero and underflow errors, thus avoiding potential
reverts of this nature in the future.

interest_model.move RUST

public(friend) fun create_interest_model_change<T>(
_: &AcTableCap<InterestModels>,
base_rate_per_sec: u64,
interest_rate_scale: u64,
borrow_rate_on_mid_kink: u64,
mid_kink: u64,
borrow_rate_on_high_kink: u64,
high_kink: u64,
max_borrow_rate: u64,
revenue_factor: u64,
borrow_weight: u64,
scale: u64,
min_borrow_amount: u64,
change_delay: u64,
ctx: &mut TxContext,

): OneTimeLockValue<InterestModel> {
[...]
assert!(mid_kink != 0 && high_kink < 1 && base_rate <=
borrow_rate_on_mid_kink <= borrow_rate_on_high_kink <= max_borrow_rate);↪→

[...]
}

© 2023 Otter Audits LLC. All Rights Reserved. 21 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-11 | Incorrect Variable Names

Description

Insupra_registry::init, the variablespyth_registry andpyth_registry_cap should be
named supra_registry and supra_registry_cap respectively for better code clarity.

Remediation

Rename pyth_registry and pyth_registry_ca to supra_registry and
supra_registry_cap respectively.

© 2023 Otter Audits LLC. All Rights Reserved. 22 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-12 | Division By Zero Error

Description

borrow_flash_loan calculates the flash loan fee based on the configured fee_rate and a poten-
tial discount. If both fee_rate and fee_discount_numerator are zero (no fee and no discount
applied), it will be impossible to obtain a flash loan from this reserve. In this case, both
fee_discount_numerator and fee_discount_denominator will be zero, resulting in an at-
tempt to dividebase_fee by zero inu64::mul_div. Sinceu64::mul_div is calledwith parameters
a = 0 and b = 0, u128::mul_div will also be called with a = 0 and b = 0. Consequently, the
call to is_safe_mulwill fail due to division by zero.

sources/market/reserve.move RUST

fun borrow_flash_loan_internal<T>(
self: &mut Reserve,
amount: u64,
fee_discount_numerator: u64,
fee_discount_denominator: u64,

): (Balance<T>, FlashLoan<T>) {
let balance = balance_bag::split<T>(&mut self.underlying_balances, amount);
let fee_rate = *wit_table::borrow(&self.flash_loan_fees, get<T>());
let base_fee = if (fee_rate > 0) {

// charge at least 1 unit of coin when fee_rate is not 0
amount * fee_rate / FlashloanFeeScale + 1

} else {
0

};
let fee_discount = u64::mul_div(base_fee, fee_discount_numerator,

fee_discount_denominator);↪→

let fee = base_fee - fee_discount;
let flash_loan = FlashLoan<T> { loan_amount: amount, fee };
(balance, flash_loan)

}

A similar case occurs in a standard borrow with ticket, if the base_borrow_fee_rate ID is set to zero,
and a ticket is created with borrowing_fee_discount_numerator set to zero, although there is a
relatively low possibility of this occurring since the ticket would have to be issued to give a zero discount.

Remediation

Modify u64::mul_div to handle the zero case explicitly. If either a (dividend) or b (divisor) is zero and
c (denominator) is not zero, the function should return zero. This will prevent the division by zero error
and allow flash loans to proceed even with a zero fee rate and no discount.

© 2023 Otter Audits LLC. All Rights Reserved. 23 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-13 | Share Price Manipulation

1. The protocol may be vulnerable to a general class of rounding attacks against lending protocols
concerning the conversion rate between tokens and shares in a lending pool. The attack involves
manipulating the share value (token-to-share conversion rate) and abusing rounding errors. The
root cause relates to how rounding decisions are determined in the protocol when dealing with
fixed precision, resulting in unintended consequences on share valuation.

2. It should be ensured that non-zero values are returned during the conversion processes, specifically
within reserve::redeem_underlying_coin. Since such conversions with zero amount are
non-sensical.

Remediation

1. Ensure the protocol should lock a certain amount of shares and tokens at initialization or first deposit
that can never be withdrawn or borrowed.

2. In redeem_underlying_coin, assert that mint_amount > 0, as done in
mint_market_coin.

© 2023 Otter Audits LLC. All Rights Reserved. 24 / 27

Scallop Audit 05 | General Findings

OS-SCA-SUG-14 | Denial Of Service

Description

There is possibility of griefing or denial of service (DoS) attacks in the context of the borrow module.
Specifically, the concern is that anyone can perform deposit and repay actions on behalf of an obligation
owner since all arguments are shared objects. Thus, An attacker may deposit a small amount of a specific
coin into the obligation of a legitimate user. This may be done by frontrunning or simply executing a
deposit transaction on behalf of the user.

sources/user/borrow.move RUST

fun borrow_internal<T>(
[...]

): (Balance<T>, Balance<T>) {
// check if sender is in whitelist
assert!(

whitelist::is_address_allowed(market::uid(market), tx_context::sender(ctx)),
error::whitelist_error()

);
[...]

}

The obligation now lists this coin as collateral, even if the amount is minuscule and not intended by the
legitimate user. Consequently, when the legitimate user attempts to borrow the same coin, the check in
borrow_internal prevents this action because the coin is already listed as collateral:

Remediation

Implement stricter access control measures to ensure that only authorized parties can perform deposit
and repay actions.

© 2023 Otter Audits LLC. All Rights Reserved. 25 / 27

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 26 / 27

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 27 / 27

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-SCA-ADV-00 [low] | Lack Of Version Check
	OS-SCA-ADV-01 [low] | Incorrect Key Check

	General Findings
	OS-SCA-SUG-00 | Avoid Unnecessary Operations
	OS-SCA-SUG-01 | Direct Field Access
	OS-SCA-SUG-02 | Eliminate Obsolete Constants
	OS-SCA-SUG-03 | Incorrect Assignment Of Function Parameters
	OS-SCA-SUG-04 | Coin Type Not Required
	OS-SCA-SUG-05 | Optimize Zero Fixed Point
	OS-SCA-SUG-06 | Unnecessary Fields
	OS-SCA-SUG-07 | Remove Empty Balances
	OS-SCA-SUG-08 | Avoid Repeated Calls
	OS-SCA-SUG-09 | Missing Confidence Check
	OS-SCA-SUG-10 | Additional Checks To Avoid Reverts
	OS-SCA-SUG-11 | Incorrect Variable Names
	OS-SCA-SUG-12 | Division By Zero Error
	OS-SCA-SUG-13 | Share Price Manipulation
	OS-SCA-SUG-14 | Denial Of Service

	Appendices
	Vulnerability Rating Scale
	Procedure

