
Audit
Thala Labs

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Ajay Kunapareddy d1r3wolf@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:sud0u53r.ak@osec.io
mailto:d1r3wolf@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-TLA-ADV-00 [crit] | Improper Accumulator Updates . 7
OS-TLA-ADV-01 [high] | Improper Accumulator Updates In V2 Mode 8
OS-TLA-ADV-02 [high] | Deducting Vault Interest When Repaying Debt 9
OS-TLA-ADV-03 [high] | Improper Reward Calculations . 10
OS-TLA-ADV-04 [med] | Denial Of Service While Vesting . 12
OS-TLA-ADV-05 [med] | Issue While Starting New Epoch In Farming 13
OS-TLA-ADV-06 [med] | Precision Loss Issue In Weighted Math 14
OS-TLA-ADV-07 [med] | Improper Price Deviation Calculation Formula 15
OS-TLA-ADV-08 [med] | Including Interest In Vault CR Calculation 16
OS-TLA-ADV-09 [low] | Improper Interest Accumulation Calculation 17
OS-TLA-ADV-10 [low] | Improper Withdrawal Fee Calculation Formula 18
OS-TLA-ADV-11 [low] | Improper Implementation Of Withdraw All 19
OS-TLA-ADV-12 [low] | Improper Implementation Of Mint Cap Check 20

05 General Findings 21
OS-TLA-SUG-00 | Implementing Set Switchboard Config Function 22
OS-TLA-SUG-01 | Configurable Simple Oracle Updater . 23
OS-TLA-SUG-02 | Using Creator Address As Key For LBPCollection 24
OS-TLA-SUG-03 | Specific Direction Of Rounding For Swap Calculations 25
OS-TLA-SUG-04 | Potential Overflow In Stable Pool . 26
OS-TLA-SUG-05 | Constraint For Penalty Multiplier And MCR . 27
OS-TLA-SUG-06 | Critical Checks In Weighted Math . 28
OS-TLA-SUG-07 | Edge Case In Auction Price Calculation . 29
OS-TLA-SUG-08 | Specific Rounding Direction For Liability . 30
OS-TLA-SUG-09 | Additional Fields For Events In Oracle . 31
OS-TLA-SUG-10 | Using Precise Invariant For Assertion . 32

Appendices

A Vulnerability Rating Scale 33

B Procedure 34

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 34

01 | Executive Summary

Overview
Thala Labs engaged OtterSec to perform an assessment of the thala-modules program. This assess-
ment of the source code was conducted between May 22nd and May 31st, 2023. For more information on
our auditing methodology, see Appendix B.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team to streamline patches and
confirm remediation.

Key Findings
During the audit engagement, we identified a total of 24 findings.

Specifically, we discovered several precision loss issues in arithmetic functions that resulted in unintended
behaviours (OS-TLA-ADV-06), improper calculation formulas (OS-TLA-ADV-07, OS-TLA-ADV-10), and issues
with interest and CR calculations (OS-TLA-ADV-02, OS-TLA-ADV-08, OS-TLA-ADV-09).

In addition, weprovided recommendations for improving the LBPdesign (OS-TLA-SUG-02), validating edge
cases (OS-TLA-SUG-06, OS-TLA-SUG-07), and implementing rounding directions for arithmetic operations
(OS-TLA-SUG-03).

Overall, we commend the Thala Labs team for being responsive and knowledgeable throughout the audit.

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 34

02 | Scope
The source code was delivered to us in a git repository github.com/ThalaLabs/thala-modules. This audit
was performed against commit dbefe09.

A brief description of the programs is as follows.

Name Description

thala_farming A farming protocol where users stake coins and earn rewards.
thala_launch A liquidity boosting pool to increase the liquidity of a particular token or asset.
thala_manager A common utility module for managing other Thala modules.
thala_oracle A two-tier oracle implemented using Pyth and Switchboard oracles.
thala_protocol An over-collateralized stablecoin.
thalaswap Amulti-asset stable pool for stablecoins and weighted pools.
thalaswap_math Amath utility module for stable and weighted pools.
thl_vesting A simple linear vesting contract for THL tokens.
vetoken A token vesting contract with dividend distributions for the vested tokens.

Note that vetokenwas later moved out into a separate repository, github.com/ThalaLabs/vetoken.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 34

https://github.com/ThalaLabs/thala-modules
https://github.com/ThalaLabs/thala-modules/commit/dbefe0973a1ea103558df433aa350c70a46f8f65
https://github.com/ThalaLabs/vetoken

03 | Findings
Overall, we report 24 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will help mitigate future vulnerabilities.

Severity Count

Critical 1
High 3

Medium 5
Low 4

Informational 11

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 34

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria may be found in Appendix A.

ID Severity Status Description

OS-TLA-ADV-00 Critical Resolved Inaccurate accumulator updates result in the incorrect calcu-
lation of additional rewards.

OS-TLA-ADV-01 High Resolved Improper accumulator updates result in incorrect calculation
of user rewards.

OS-TLA-ADV-02 High Resolved Repaid interest should be deducted from the vault.

OS-TLA-ADV-03 High Resolved Incorrect calculations of rewards during distribution may re-
sult in certain users receiving reduced rewards.

OS-TLA-ADV-04 Medium Resolved Denial of service while vesting in thl_vesting due to im-
proper usage of claim ID.

OS-TLA-ADV-05 Medium Resolved Issuewhile starting a new epoch by ending the current epoch.

OS-TLA-ADV-06 Medium Resolved Precision loss issue in weighted math leads to a loss of funds
while swapping small amounts.

OS-TLA-ADV-07 Medium Resolved Improper price deviation calculation formula in oracle.

OS-TLA-ADV-08 Medium Resolved Interest is included while calculating the collateral ratio of a
vault.

OS-TLA-ADV-09 Low Resolved Improper interest accumulation calculation while updating
the global interest index.

OS-TLA-ADV-10 Low Resolved Improper withdrawal fee calculation formula in the stability
pool leads to the incentivization of early withdrawals.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 34

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-11 Low Resolved Improper implementation of withdraw_allmay lead to
the creator removing all liquidity from live LBP.

OS-TLA-ADV-12 Low Resolved Improper implementation of the mint cap check in borrow.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 34

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-00 [crit] | Improper Accumulator Updates

Description

stake and unstake update parameters for thl coin rewards, which are also affected by the
stake_amount. As a result, altering the stake amountmay cause incorrect calculations of extra rewards.

Amalicious usermay exploit this vulnerability and take out a flash loan to increase their stake_amount,
enabling them to collect rewards for the newly added stake.

Proof of Concept

1. The manager adds more reward coins to the farming protocol.

2. A user claims additional rewards from the farm, which updates the global accumulator based on
the current pool stake value.

3. An attacker stakes a large amount and attempts to claim the reward.

4. Due to the failure to update user_pool_info.last_acc_rewards_per_share for extra
rewards before staking and unstaking, the attacker may claim the entire pool balance by calling
claim_extra_reward.

Remediation

stakeandunstake should first update theaccumulator for extra rewardsusingclaim_extra_reward
before modifying the stake amount. Creating a vector to store the names of all additional reward coins
and using them in the claim function is a way to go about it.

Patch

Fixed in 2693e34 by adding an additional field to the PoolInfo structure for storing the amounts of extra
reward coins. These amounts are updated during the staking and unstaking processes.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 34

https://github.com/ThalaLabs/thala-modules/commit/2693e34033c2fa56e1e440da2a9fa3f333d9b5d7

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-01 [high] | Improper Accumulator Updates In V2 Mode

Description

The stake and unstake functions update the stake amount of the user. These functions also calculate
the amount of rewards accrued until that time and store it, and then update the accumulator on the user
pool.

In the recent changes introducing v2 mode for farming, when v2 mode is enabled, the thl rewards for a
user are not accrued in stake and unstake; this results in improper rewards for users.

Remediation

stakeandunstake should first update theaccumulator forthl rewardsusingaccrue_user_reward
before modifying the stake amount.

Patch

Fixed in e55c601 by calling the accrue_user_reward function call when v2 mode is enabled.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 34

https://github.com/ThalaLabs/thala-modules/commit/e55c60192b2a08301995536ff5d78b782dd87a37

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-02 [high] | Deducting Vault Interest When Repaying Debt

Description

In theprotocolmodule,repay_internal is used to repayamountsborrowed fromthevault. In addition
to the debt, clearing the interest should be done when repaying the borrowed amount.

Although the protocol uses fees::absorb_fee to calculate and absorb the repaid interest amount,
the protocol does not subtract this amount from vault.interest. Consequently, a user is unable to
clear the interest in their vault, even though the protocol absorbs it from the repayment amount

Remediation

Subtract repay_interest_amount from the vault.interest.

Patch

Fixed in 48f7c83 by subtracting repay_interest_amount from the vault.interest.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 34

https://github.com/ThalaLabs/thala-modules/commit/48f7c83809ced914e40888c1ef6e7bc3a26ec318

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-03 [high] | Improper Reward Calculations

Description

In the protocolmodule,accumulated_gain calculates the earnings of a token solely basedon the scale
of the snapshot. However, a user’s amount may have participated in the distribution of the subsequent
scale as well. As a result, the failure to account for thismay lead to incorrect calculations of token earnings.

Proof of Concept

thala-protocol-v1/sources/reward_distributor.move RUST

use std::debug;

#[test(account = @0xA)]
fun test_gain(account: &signer) {

// prepare
let rd = new();
let mut_rd = &mut rd;

deposit(mut_rd, @0x1, 10000); distribute<ETH>(mut_rd, 9999, 500);
// debug::print(&mut_rd.current_scale); // Out: 0

deposit(mut_rd, @0x2, 10000); distribute<ETH>(mut_rd, 8999, 450);
// debug::print(&mut_rd.current_scale); // Out: 1

deposit(mut_rd, @0x1, 9000); distribute<ETH>(mut_rd, 9999, 500);
// debug::print(&mut_rd.current_scale); // Out: 2

let d1 = account_deposit(mut_rd, @0x1);
withdraw(mut_rd, @0x1, d1);
let e1 = claim<ETH>(mut_rd, @0x1);
debug::print(&d1);
debug::print(&e1);

let d2 = account_deposit(mut_rd, @0x2);
withdraw(mut_rd, @0x2, d2);
let e2 = claim<ETH>(mut_rd, @0x2);
debug::print(&d2);
debug::print(&e2); // Err: This has to be 500, but the output is 450

// cleanup
move_to(account, RewardDistributorHolder { reward_distributor: rd });

}

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 34

Thala Labs Audit 04 | Vulnerabilities

Remediation

Increase the scale factor and include two consecutive scales in the earnings calculation in the accumulated
gain. This will ensure that the function takes into account all relevant factors for accurate calculations of
token earnings.

Patch

Fixed in bdfabae by increasing scaling factor and improving reward calculation.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 34

https://github.com/ThalaLabs/thala-modules/commit/bdfabaee4d8f51a03f0d829609c4d604a93edf14

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-04 [med]| Denial Of Service While Vesting

Description

start_vesting in thl_vesting/farming_vesting.move initiates vesting when called by a
user to begin vesting. It uses a smart table on vesting.claims to store the claims of the users.

The length of the vesting.claims smart table is the claim ID for the current vesting. Claiming a claim
removes the entry at the claim ID from the smart table, resulting in a decrease in the length of the smart
table. Consequently, attempting to add a new claim causes a denial of service issue.

Proof of Concept

1. A user (userA) begins vesting when the length of the claims table is 10 and claims[10] will be userA’s
record and the length of the smart table becomes 11.

2. Now, if one of the previous claims got claimed, it will reduce the length of the smart table to 10.

3. Now, if another user (userB) attempts to start vesting, it reverts because it tries to add the claim in
claims[10] although userA’s claim record already exists at 10.

Remediation

Track the index using a structure field stored on Vesting and increment it every time a record is added
to the smart table.

Patch

Fixed in af0d186 by storing the next claim id in Vesting.next_claim_id and incrementing it for
every new claim.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 34

https://github.com/ThalaLabs/thala-modules/commit/af0d1869ed07c43156f64e56cef6cd58d125c861

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-05 [med]| Issue While Starting New Epoch In Farming

Description

end_epoch inthala_protocol/farming.move ends the currently running epoch in-order to start
a new epoch.

If an epoch ends earlier than epoch_end_seconds, the code sets farming.epoch_end_seconds
to epoch_now. If the current epoch’s starting time is in the future and ending this epoch is attempted,
farming.epoch_end_seconds is set to farming.epoch_start_seconds, which is the future
time even though the epoch has ended immediately. Now, starting another epoch is impossible until we
reach farming.epoch_start_seconds.

Remediation

Setfarming.epoch_end_seconds totimestamp::now_seconds() instead, if theepochended
earlier than epoch_end_seconds.

Patch

Fixed in af5fc4a by setting farming.epoch_end_seconds to timestamp::now_seconds().

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 34

https://github.com/ThalaLabs/thala-modules/commit/af5fc4a1f607514d92acfceed44df894a432db76

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-06 [med]| Precision Loss Issue In Weighted Math

Description

The math module calculates the amount taken in during a swap based on the amount given out the
balances in the pool and the weights of the assets. calc_in_given_out_internal is responsible
for this calculation, which involves usinglog_exp_math::pow to perform the required exponentiation.

log_exp_math::pow used by calc_in_given_out_internal is vulnerable to precision errors,
which may return incorrect values. For instance, the function may incorrectly calculate 1.0000000002
** 1 = 1.0. This precision issue may be exploited in calc_in_given_out_internal, leading to
a return value of zero despite a non-zero amount_out value.

Proof of Concept

1. Assume bI = bO = 10000000000 ($10,000) and weights of the assets, wI = wO = 50.

2. When attempting to calculate the amount_in for 100 as the amount_out, the returned value is
97, whereas the expected value is 10.

3. The loss of precision becomes more significant as the asset balances increase.

4. Let’s assume bI = bO = 1000000000000 ($1,000,000) and wI = wO = 50.

5. If the amount_out is set to 200, the returned value is zero, indicating that wemay perform a swap
by giving zero tokens and receiving 200 tokens in return.

Remediation

Improve the precision of log_exp_math::pow and set the return value toxwhen log_exp_math::
pow(x, 1) is called.

Additionally, ensure that the invariant value does not decrease after a swap by asserting its non-decreasing
nature, helping to avoid any rounding problems that may lead to a loss of value in the pool.

Patch

Fixed in 572dabb by improving precision in log_exp_math::pow and short-circuiting the return value
to xwhen log_exp_math::pow(x, 1) is called.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 34

https://github.com/ThalaLabs/fixed_point64/commit/572dabbdff07f6a7eb7edc667ea34101c443b20f

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-07 [med]| Improper Price Deviation Calculation Formula

Description

get_price_diff_ is responsible for computing price deviation. However, to calculate the percentage
of price deviation, the formula should be (diff(new_price, old_price) / old_price) *
100. The current implementation usesnew_price as the denominator ifnew_price > old_price.

thala-protocol-v1/sources/oracle.move RUST

// Get the difference between two prices a and b in percentage. Result is
rounded to nearest integer↪→

fun get_price_diff_pct(a: FixedPoint64, b: FixedPoint64): u64 {
if (fp64::gt(&a, &b)) {

fp64::decode(fp64::mul(fp64::div_fp(fp64::sub_fp(a, b), a), 100))
} else if (fixed_point64::lt(&a, &b)) {

fp64::decode(fp64::mul(fp64::div_fp(fp64::sub_fp(b, a), b), 100))
} else {

0
}

}

Remediation

Use b (old_price) as the denominator in both cases.

Patch

Fixed in bd1e275 by using b as the denominator in both cases.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 34

https://github.com/ThalaLabs/thala-modules/commit/bd1e27513c4e2cdb677cb18d926bce3f178cab81

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-08 [med]| Including Interest In Vault CR Calculation

Description

redeem_collateral and liquidate calculate the collateral ratio (CR) for a vault, used in redemp-
tion and liquidation calculations. However, these functions do not account for the updated interest of the
vault when calculating the CR.

As a result, the CR is calculated without considering the vault.interest, leading to the use of an
incorrect CR value in other calculations.

Remediation

redeem_collateral and liquidate should be updated to consider the updated interest of the
vault when calculating the collateral ratio (CR). Specifically, vault.interest should be updated using
accrue_vault_interest just before calculating the CR in redeem_collateral.

In addition, the updated vault.interest should be taken into account when calculating the CR for a
vault in both redeem_collateral and liquidate.

Patch

Fixed in 108cd74 by using vault_liability_amount, which returns the total liability of the vault,
i.e., vault.debt + vault.interest.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 34

https://github.com/ThalaLabs/thala-modules/commit/108cd74581b3858b10697dc678e17d925b9f1437

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-09 [low] | Improper Interest Accumulation Calculation

Description

sync_interest_rate derives the value of days_elapsed by dividing seconds_elapsed by the
number of seconds in a day. This calculation truncates any remaining seconds, whichmay cause the value
of days_elapsed to be rounded down.

Asa result, ifseconds_elapsed is equal to1day, 23hours, and59minutes, thevalueofdays_elapsed
would be rounded down to one. Then, the new interest index would be calculated for only one day, and
the last updated timestamp would be incorrect by 23 hours and 59 minutes. Consequently, the global
interest index ratio and interest on vaults may be lower than expected.

Remediation

Incrementinterest_last_update_secondswithdays_elapsed * SECONDS_IN_DAY instead
of directly setting it to the current timestamp.

Patch

Fixed in #105.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 34

https://github.com/ThalaLabs/thala-modules/pull/105

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-10 [low] | Improper Withdrawal Fee Calculation Formula

Description

withdraw_mod handles the withdrawal fee calculation. To determine the withdrawal fee amount,
the intended formula should utilize the (1 - (elapsed_time / withdrawal_fee_period))
* withdrawal_fee_max_ratio formula, which decreases the withdrawal fee proportionally over
time.

However, in the implemented formula, the cover_ratio is not subtracted from one when calculating
the fee_ratio value.

As a result, users whowithdraw shortly after depositingmay encounter almost zero withdrawal fees, while
those who withdraw just before the withdrawal period may face maximumwithdrawal fees.

thala_protocol/sources/stability_pool.move RUST

let withdrawal_fee_amount =
if (elapsed_time_seconds >= params.withdrawal_fee_period_seconds) 0
else if (elapsed_time_seconds == 0) fixed_point64::decode(

fixed_point64::mul(params.withdrawal_fee_max_ratio, amount)
)
else {

let cover_ratio = fixed_point64::fraction(elapsed_time_seconds,
params.withdrawal_fee_period_seconds);↪→

let fee_ratio = fixed_point64::mul_fp(cover_ratio,
params.withdrawal_fee_max_ratio);↪→

fixed_point64::decode(fixed_point64::mul(fee_ratio, amount))
};

Remediation

Use the correct formula for calculating fee_ratio.
fee_ratio = (1 - cover_ratio) * withdrawal_fee_max_ratio.

Patch

Fixed in dded61d by implementing the correct formula.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 34

https://github.com/ThalaLabs/thala-modules/commit/dded61dc0c2967d3cac92553b5c4e1d0f56141a9

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-11 [low] | Improper Implementation Of Withdraw All

Description

A pool creator may remove liquidity from the pool by specifying a percentage to remove in bps format.
However, if the LBP is still ongoing, only a portion of the liquidity may be removed from the pool, with the
remaining liquidity being only removable once the LBP has concluded.

This is implemented through a check of the remove_bps variable to see if it is equal to BPS_BASE. If
this check evaluates as true, an assertion ismade to ensure that the LBP has indeed ended before allowing
for complete liquidity removal.

Thismay be easily bypassed by passing inremove_bps = 9999 and calling theremove_liquidity
multiple times. This removes all the liquidity from the pool even when the LBP has not ended.

thala-launchpad/sources/lbp.move RUST

let withdraw_all = remove_bps == BPS_BASE;
if (withdraw_all) {

assert!(lbp_ended(lbp), ERR_LBP_NOT_ENDED)
};

Remediation

Assert amount_0 != balance_0 && amount_1 != balance_1 if withdraw_all is false.

Patch

Fixed in cd724d9by removingwithdraw_allandallowing the creator to removeanyamount of liquidity
from their pool.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 34

https://github.com/ThalaLabs/thala-modules/commit/cd724d917a01dcfec4d170edd54dcb10931be384

Thala Labs Audit 04 | Vulnerabilities

OS-TLA-ADV-12 [low] | Improper Implementation Of Mint Cap Check

Description

The mint_cap parameter set by the protocol limits the number of mintable MOD tokens. The limit is
checked by confirming that the newly minted amount alongside the previous total debt does not exceed
the mint_cap.

But in implementation, the amount considered in this check (amount) does not match the amount
actually minted (total_amount = amount + fee_amount). Hence, this leads to the minting of
MOD exceeding the amount set in the mint_cap parameter.

Remediation

Use the amount actually minted while enforcing the mint_cap constraint.

Patch

Fixed in baa84d1 by using the same amount while checking the mint_cap constraint andminting MOD.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 34

https://github.com/ThalaLabs/thala-modules/commit/baa84d1a0b22638726ae0dd3bd949c7523218e78

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

ID Description

OS-TLA-SUG-00 Implementing a setter function to update the Switchboard configuration.

OS-TLA-SUG-01 Configurable simple oracle updater address for ease of use.

OS-TLA-SUG-02 Using the creator address as a key for the LBP collection instead of calculating the
hash.

OS-TLA-SUG-03 Implementing functions that specify the direction of rounding for swap calculations

OS-TLA-SUG-04 Potential overflow in a stable pool while adding liquidity to the pool.

OS-TLA-SUG-05 The constraint for penalty multiplier andminimum collateralization ratio.

OS-TLA-SUG-06 Critical checks in weightedmath to avoid emptying the pool.

OS-TLA-SUG-07 The edge case in the auction price calculation leads to the improper status of the
auction price.

OS-TLA-SUG-08 Specific rounding direction for liability while calculating vault interest.

OS-TLA-SUG-09 Additional fields for events to specify more information about the event taking place.

OS-TLA-SUG-10 A more precise fixed point invariant may be used instead of rounding down for
assertion

© 2023 Otter Audits LLC. All Rights Reserved. 21 / 34

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-00 | Implementing Set Switchboard Config Function

Description

The oracle module utilizes the Switchboard oracle to obtain coin prices. The aggregator address for a
specific coin type is stored in the SwitchboardConfig<CoinType> structure and set during the
initialization process of the oracle for that coin.

However, once the oracle is initialized, the manager is unable to update the aggregator configuration for a
given coin.

Remediation

Implement a set_switchboard_config function to enable the manager to update the aggregator
address for a coin.

Patch

Fixed in 0e805a2 by implementing a configure_switchboard function.

© 2023 Otter Audits LLC. All Rights Reserved. 22 / 34

https://github.com/ThalaLabs/thala-modules/commit/0e805a29a5fb5ac51a56d73b8cf116f254442d5a

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-01 | Configurable Simple Oracle Updater

Description

The oracle module employs a straightforward oracle that saves the price of a coin in a resource. The price
of a coin, frequently updated by a protocol bot, may be utilized as a backup in the event of a failure of the
Pyth or Switchboard oracles.

The resource updater, responsible for updating the coin price in the resource, is statically set in the move
configuration file and is fixed at compile time.

Remediation

Implement a configurable simple oracle updater address instead. Themanager will then be able to update
the address in the case of losing the updater private key.

Patch

Fixed in 778e6ee by implementing configure_simple_oracle.

© 2023 Otter Audits LLC. All Rights Reserved. 23 / 34

https://github.com/ThalaLabs/thala-modules/commit/778e6eebdf71451e83ab400f4bdc9c9796f5fc7a

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-02 | Using Creator Address As Key For LBPCollection

Description

The launchmodule stores a list of LBP instances in theLBPCollection<Asset0, Asset1> resource
using sha3(asset_0_name + asset_1_name + creator_address) as the key and LBP as
the value.

However, since an LBPCollection has unique asset generics for each asset pair, calculating the hash
with asset names is unnecessary. Instead, the creator’s address may function as the key for the LBP
instances.

Remediation

Use the creator address as the key for LBPs in LBPCollection and rewrite all functions that use the
LBP collection.

Patch

Fixed in f4fb228.

© 2023 Otter Audits LLC. All Rights Reserved. 24 / 34

https://github.com/ThalaLabs/thala-modules/commit/f4fb2288776e05d94cebe7f62228d2132299105e

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-03 | Specific Direction Of Rounding For Swap Calculations

Description

The math calculations for swap pools are crucial from a security standpoint, as rounding issues are
vulnerable to exploitation, resulting in a loss of funds from the protocol. Functionswith a specific rounding
direction are imperative in preventing exploits from surfacing.

For instance, the code should round down calculations when calculating the number of tokens given to
the user for a specific input token.

The rounding in the formulae should involve rounding down all variables in the formula directly pro-
portional to the output amount while rounding up those inversely proportional. Applying said changes
should be done on arithmetic operations such as division and exponentiation.

Potential rounding issues may be avoided by following these guidelines.

Remediation

Implement arithmetic functions with specific directions for rounding and utilize them accordingly.

Patch

Fixed in 951ad53 by including mitigations.

© 2023 Otter Audits LLC. All Rights Reserved. 25 / 34

https://github.com/ThalaLabs/thala-modules/commit/951ad53db58121398b79f78747a6625c90c78c02

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-04 | Potential Overflow In Stable Pool

Description

There is a potential for the value of the liquidity variable to overflow during the execution of
add_liquidity, if the total_supply and the difference between invariants are large enough.

thalaswap/sources/stable_pool.move RUST

let total_supply = base_pool::pool_token_supply<StablePoolToken<Asset0,
Asset1, Asset2, Asset3>>();↪→

let liquidity = (total_supply * (inv - prev_inv)) / prev_inv;
event::emit_event<AddLiquidityEvent<Asset0, Asset1, Asset2, Asset3>>(

&mut pool.events.add_liquidity_events,
AddLiquidityEvent { amount_0, amount_1, amount_2, amount_3,

minted_lp_coin_amount: liquidity }↪→

);

Remediation

Convert the total_supply and inv - prev_inv values to u128 for multiplication and convert
them back to u64 after the division.

Patch

Fixed in 205acb7 by using u256.

© 2023 Otter Audits LLC. All Rights Reserved. 26 / 34

https://github.com/ThalaLabs/thala-modules/commit/205acb75e3836d9dca46052ae1114df215052996

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-05 | Constraint For Penalty Multiplier And MCR

Description

Thevalueof penalty_multiplier andMCR shouldbeset such that ifCR ≤ 1, then(penalty_mul
tiplier * (MCR - CR)) should be ≥ 1.

This implies that penalty_multiplier ≥ 1/(MCR - 1) in order to assert that the health of the
vault increases after the liquidation.

Remediation

Enforce thepenalty_multiplier ≥ 1/(MCR - 1) constraintwhile updating theMCR andpenal
ty_multiplier.

Patch

Fixed in #118.

© 2023 Otter Audits LLC. All Rights Reserved. 27 / 34

https://github.com/ThalaLabs/thala-modules/pull/118

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-06 | Critical Checks In Weighted Math

Description

In themathmodule,calc_in_given_out_internal andcalc_out_given_in_internal are
responsible for calculating the amounts to be given in and out.

It is critical to assert that weight_ratio > 0 in calc_in_given_out_internal and calc_
out_given_in_internal to avoid the cases where amountIn = balanceIn is irrespective of
amountOut and amountOut = 0 is irrespective of amountIn.

Remediation

Enforce the weight_ratio > 0 constraint in calc_in_given_out_internal and
calc_out_given_in_internal.

Patch

Fixed in #109.

© 2023 Otter Audits LLC. All Rights Reserved. 28 / 34

https://github.com/ThalaLabs/thala-modules/pull/109

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-07 | Edge Case In Auction Price Calculation

Description

status returns a boolean, which determines if the auction requires a reset, along with the current
auction price.

With DEFAULT_RESERVE_RATIO_BPS being zero, in an edge case where the
elapsed time == expiry_time_seconds, the calculated price and decrease_ratio will
be zero while the below_reserve will be false since 0 < 0 = false.

Since a denominator in a formula in bid uses the returned auction price, a division with zero error will
occur and abort. It may be a critical issue if bidding is completed successfully with auction price =
0.

Remediation

Change the condition in the if statement in status from
(elapsed_seconds > params.expiry_time_seconds) to
(elapsed_seconds >= params.expiry_time_seconds).

Patch

Fixed in #120.

© 2023 Otter Audits LLC. All Rights Reserved. 29 / 34

https://github.com/ThalaLabs/thala-modules/pull/120

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-08 | Specific Rounding Direction For Liability

Description

Updating the vault interest based on the global interest rate uses accrue_vault_interest. The
newly calculated interest, new_liability, is decoded to u64 using fixed_point64::decode,
which does not specify the direction of rounding.

If rounded down, it may lead to lesser interest rates in vaults.

Remediation

Specify the rounding direction to up by using fixed_point64::decode_round_up.

Patch

Fixed in d5c9605.

© 2023 Otter Audits LLC. All Rights Reserved. 30 / 34

https://github.com/ThalaLabs/thala-modules/commit/d5c96050dc70e02d8fa451a6feeba5db5fe31621

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-09 | Additional Fields For Events In Oracle

Description

Wheneveravalue inOracleParams changes, theOracleParamChangeEventeventemits. However,
the event fails to specify the coin name for which it changes the parameters.

Add the coin_name as a field in OracleParamChangeEvent to specify the coin for which the param-
eters are changed.

Patch

Fixed in #111.

© 2023 Otter Audits LLC. All Rights Reserved. 31 / 34

https://github.com/ThalaLabs/thala-modules/pull/111

Thala Labs Audit 05 | General Findings

OS-TLA-SUG-10 | Using Precise Invariant For Assertion

Description

compute_invariant_weights_u64 is used in themathmodule to calculate an invariant and assert
that it is non-decreasing after the swap. In this function, the calculated invariant is rounded down before
returning it, which may result in a loss of precision and frequent reverting of swaps.

It is preferred to return the fixed point value directly and use it for asserting the invariant and decoding it
to u64 only when necessary.

Remediation

Return fixed point values directly for invariant assertion in calc_out_given_in_weights_u64 and
calc_in_given_out_weights_u64.

Patch

Fixed in #110.

© 2023 Otter Audits LLC. All Rights Reserved. 32 / 34

https://github.com/ThalaLabs/thala-modules/pull/110

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 33 / 34

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 34 / 34

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-TLA-ADV-00 [crit] | Improper Accumulator Updates
	OS-TLA-ADV-01 [high] | Improper Accumulator Updates In V2 Mode
	OS-TLA-ADV-02 [high] | Deducting Vault Interest When Repaying Debt
	OS-TLA-ADV-03 [high] | Improper Reward Calculations
	OS-TLA-ADV-04 [med] | Denial Of Service While Vesting
	OS-TLA-ADV-05 [med] | Issue While Starting New Epoch In Farming
	OS-TLA-ADV-06 [med] | Precision Loss Issue In Weighted Math
	OS-TLA-ADV-07 [med] | Improper Price Deviation Calculation Formula
	OS-TLA-ADV-08 [med] | Including Interest In Vault CR Calculation
	OS-TLA-ADV-09 [low] | Improper Interest Accumulation Calculation
	OS-TLA-ADV-10 [low] | Improper Withdrawal Fee Calculation Formula
	OS-TLA-ADV-11 [low] | Improper Implementation Of Withdraw All
	OS-TLA-ADV-12 [low] | Improper Implementation Of Mint Cap Check

	General Findings
	OS-TLA-SUG-00 | Implementing Set Switchboard Config Function
	OS-TLA-SUG-01 | Configurable Simple Oracle Updater
	OS-TLA-SUG-02 | Using Creator Address As Key For LBPCollection
	OS-TLA-SUG-03 | Specific Direction Of Rounding For Swap Calculations
	OS-TLA-SUG-04 | Potential Overflow In Stable Pool
	OS-TLA-SUG-05 | Constraint For Penalty Multiplier And MCR
	OS-TLA-SUG-06 | Critical Checks In Weighted Math
	OS-TLA-SUG-07 | Edge Case In Auction Price Calculation
	OS-TLA-SUG-08 | Specific Rounding Direction For Liability
	OS-TLA-SUG-09 | Additional Fields For Events In Oracle
	OS-TLA-SUG-10 | Using Precise Invariant For Assertion

	Appendices
	Vulnerability Rating Scale
	Procedure

