
Audit
Akita

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4
Proofs of Concept . 4

04 Vulnerabilities 6
OS-AKT-ADV-00 [crit] [resolved] | Missing Loan Recipient Account Check 7
OS-AKT-ADV-01 [crit] [resolved] | Improperly Validated Lender Account 8
OS-AKT-ADV-02 [high] [resolved] | Improper Collateral Bump Checks 9
OS-AKT-ADV-03 [high] [resolved] | Improper Collateral Amount Checks 10
OS-AKT-ADV-04 [high] [resolved] | Unsound collateral design 11

05 General Findings 12
OS-AKT-SUG-00 [resolved] | Closing Edit Proposals . 13
OS-AKT-SUG-01 [resolved] | Unnecessary Use of Bumps . 14
OS-AKT-SUG-02 [resolved] | Missing AcceptBorrowRequest Slippage Checks 15
OS-AKT-SUG-03 [resolved] | Borrow request duration should not be 0 16
OS-AKT-SUG-04 [resolved] | Use Associated Token Account . 17
OS-AKT-SUG-05 [resolved] | Calculating Borrow Fee Does Floor Division by Default 18
OS-AKT-SUG-06 [resolved] | Checking Borrow Request for Edit Proposal 19

Appendices

A Program Files 20

B Proof of Concepts 21

C Implementation Security Checklist 22

D Procedure 24

E Vulnerability Rating Scale 25

© 2022 OtterSec LLC. All Rights Reserved. 1 / 25

01 | Executive Summary

Overview

Akita engaged OtterSec to perform an assessment of the akita program.

This assessment was conducted between June 8th and June 17th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation.

We delivered final confirmation of the patches July 2nd, 2022.

Key Findings

The following is a summary of the major findings in this audit.

• 12 findings total
• 2 vulnerabilities which could lead to loss of funds:

– OS-AKT-ADV-00: Missing loan recipient account check
– OS-AKT-ADV-01: Improperly validated lender account

As a part of this audit, we also provided proofs of concept for each vulnerability to prove exploitability and
enable simple regression testing. These scripts can be found at https://osec.io/pocs/akita. For a full list,
see Appendix B.

© 2022 OtterSec LLC. All Rights Reserved. 2 / 25

https://osec.io/pocs/akita

02 | Scope
The source code was delivered to us in a git repository at https://github.com/otter-sec/akita/tree/master/
programs/akita. This audit was performed against commit 425d73.

There was a total of one program included in this audit. A brief description of the programs is as follows,
and a full list of program files and hashes can be found in Appendix A.

Name Description

Akita A peer-to-peer borrowing and lending protocol.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 25

https://github.com/otter-sec/akita/tree/master/programs/akita
https://github.com/otter-sec/akita/tree/master/programs/akita

03 | Findings
Overall, we report 12 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact,
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 2
High 3

Medium 0
Low 0

Informational 7

Proofs of Concept

For each vulnerability we created a proof of concept to enable easy regression testing. We recommend
integrating these as part of a comprehensive test suite. The proof of concept directory structure can be
found in Appendix B.

A GitHub repository containing these proof of concepts can be found at https://osec.io/pocs/akita.

To run a PoC:

SH

./run.sh <directory name>

© 2022 OtterSec LLC. All Rights Reserved. 4 / 25

https://osec.io/pocs/akita

Akita Audit 03 | Findings

For example,

SH

./run.sh os-akt-adv-00

Each proof of concept comes with its own patch file, which modifies the existing test framework to
demonstrate the relevant vulnerability. We also recommend integrating these patches into the test suite
to prevent regressions.

© 2022 OtterSec LLC. All Rights Reserved. 5 / 25

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix E.

ID Severity Status Description

OS-AKT-ADV-00 Critical Resolved Lender-controllableloan_recipient_token_account
and loan_token_mint addresses lead to loss of funds.

OS-AKT-ADV-01 Critical Resolved A lender is able to close their external token account, prevent-
ing the borrower from repaying and forcing them to default.

OS-AKT-ADV-02 High Resolved Any user can lock the collateral on a borrow request for-
ever by giving an unexpected authority_bump to the
AddCollateral instruction.

OS-AKT-ADV-03 High Resolved Any user can add collateral with collateral_amount
equal to 0 to a borrow request to prevent it frombeing seized.

OS-AKT-ADV-04 High Resolved Any user can add a collateral using a
collateral_mint that they own and freeze the
collateral_token_account.

© 2022 OtterSec LLC. All Rights Reserved. 6 / 25

Akita Audit 04 | Vulnerabilities

OS-AKT-ADV-00 [crit] [resolved] | Missing Loan Recipient Account Check

Description

In the AcceptBorrowRequest instruction, the loan_recipient_token_account and
loan_token_mint accounts are not properly checked against the borrow_request state.

This allows an attacker to transfer the requested tokens to their own account. Note that even though the
borrower does not receive the tokens, they still are forced to repay them. Otherwise, they will lose their
collateral to the lender.

Proof of Concept

Consider the following scenario:

1. A borrower creates a borrow request using the InitializeBorrowRequest instruction.

2. The borrower adds one ormore collateral tokens to the borrow request using theAddCollateral
instruction.

3. A malicious lender accepts the borrow request with their own loan_token_mint and
loan_recipient_token_account addresses, using the AcceptBorrowRequest instruc-
tion.

4. Now, the borrow request is considered to be accepted by the lender, and the loan amount is given
to the borrower. However, the borrower doesn’t receive the loan in their account.

5. In addition, the borrower must now pay the requested borrow amount to the lender–or else they
will lose their collateral to the lender.

6. After the duration of the loan has expired, if the borrow amount is not yet returned, the lender can
seize the collateral using the SeizeCollateral instruction.

Remediation

Use Anchor constraints to enforce the missing checks in the AcceptBorrowRequest instruction.

RUST

borrow_request.loan_recipient_token_account == loan_recipient_token_account
&& borrow_request.loan_token_mint == loan_token_mint

Patch

Now using proper token account checks. Fixed in #2

© 2022 OtterSec LLC. All Rights Reserved. 7 / 25

https://github.com/akitafinance/akita/pull/2

Akita Audit 04 | Vulnerabilities

OS-AKT-ADV-01 [crit] [resolved] | Improperly Validated Lender Account

Description

In the AcceptBorrowRequest instruction, the lender passes in an external token account which the
borrower pays into. If the lender closes said account after accepting the borrow request, the borrower will
become unable to repay the loan, and thus is forced to default.

Proof of Concept

Consider the following scenario:

1. A borrower creates a borrow request using the InitializeBorrowRequest instruction.

2. The borrower adds one ormore collateral tokens to the borrow request using theAddCollateral
instruction.

3. A malicious lender accepts the borrow request using the AcceptBorrowRequest instruction.

4. Afteraccepting theborrowrequest, the lender closes theirrepay_recipient_token_account.

5. When the borrower tries to repay their loan using the RepayLoan instruction, the transaction fails,
since the destination address of the transfer is closed

6. After thedurationof theborrowrequest isover, the lender seizes thecollateral using theSeizeCollateral
instruction.

Remediation

To remediate this vulnerability, use a PDA that collects the repaid loan amount and implement another
instruction for the lender to collect their loan amount from the PDA.

Patch

Now using a PDA to receive repaid loan amount. Fixed in #2.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 25

https://github.com/akitafinance/akita/pull/2

Akita Audit 04 | Vulnerabilities

OS-AKT-ADV-02 [high] [resolved] | Improper Collateral Bump Checks

Description

Using theAddCollateral instruction, anyuser canaddcollateral to aborrow request. In the instruction,
authority_bump is taken as an input parameter and used to generate the borrow request authority
PDA address.

If authority_bump is not equal to borrow_request.authority_bump, then the collateral can-
not be withdrawn or seized. This is because the WithdrawCollateral and SeizeCollateral
instructions use the borrow_request.authority_bump as bump to generate the borrow request
authority PDA.

This leads to failure when withdrawing or seizing any collateral that was added before this collateral.

Proof of Concept

Consider the following scenario:

1. A borrower creates a borrow request using the InitializeBorrowRequest instruction.

2. The borrower adds one ormore collateral tokens to the borrow request using theAddCollateral
instruction.

3. A malicious user then adds more collateral using the AddCollateral instruction with
authority_bump set to a value that is not equal to borrow_request.authority_bump.

4. Now, since the borrow request is still pending, if the borrower tries to withdraw the collateral, the
transaction fails. Since this collateral cannot be withdrawn, all the collateral that is added before
this collateral will be locked.

5. Even if a lender accepts the borrow request and tries to seize the collateral after the duration
is complete, it will fail. This results from the SeizeCollateral instruction using the same
authority_seedsmacro as the WithdrawCollateral instruction.

Remediation

To remediate this vulnerability, add a check that makes sure borrow_request.authority_bump is
equal to authority_bump to the AddCollateral instruction.

Patch

Added check: authority_bump == borrow_request.authority_bump. Fixed in #3

© 2022 OtterSec LLC. All Rights Reserved. 9 / 25

https://github.com/akitafinance/akita/pull/3

Akita Audit 04 | Vulnerabilities

OS-AKT-ADV-03 [high] [resolved] | Improper Collateral Amount Checks

Description

Using the AddCollateral instruction, any user can add collateral to any borrow request. In the in-
struction, a check is not implemented to determine whether the collateral_amount is greater than
0.

If an amount of collateral equal to 0 tokens is added, then, after the duration of the borrow request is
complete, the lender will not be able to seize any of the collateral that is part of the borrow request. This is
a result of the constraint in SeizeCollateral instruction that checks whether the collateral amount is
greater than 0. If it isn’t, the instruction will fail. Since the current collateral cannot be seized, the previous
collateral will also be locked from seizure.

Proof of Concept

Consider the following scenario:

1. A borrower creates a borrow request using the InitializeBorrowRequest instruction.

2. The borrower adds one ormore collateral tokens to the borrow request using theAddCollateral
instruction.

3. Amalicioususer thenaddscollateral using theAddCollateral instructionwithcollateral_amount
equal to 0.

4. A lender accepts the borrow request and tries to seize the collateral after the duration of the borrow
request is complete. This will fail as the SeizeCollateral instruction has a constraint on the
collateral_token_account that determines if the amount in it is greater than 0.

Remediation

To remediate this vulnerabilty, addachecksuchascollateral_amount > 0 to theAddCollateral
instruction.

Patch

Only the borrower can add collateral. Fixed in #3

© 2022 OtterSec LLC. All Rights Reserved. 10 / 25

https://github.com/akitafinance/akita/pull/3

Akita Audit 04 | Vulnerabilities

OS-AKT-ADV-04 [high] [resolved] | Unsound collateral design

Description

Using the AddCollateral instruction, any user can add collateral to any borrow request. A malicious
user can add collateral with a collateral_mint of their own and a freeze_authority set to their
own account.

The user can then freeze the collateral_token_account using their freeze authority. Then nei-
ther the borrower nor the lender will be able to withdraw or seize the collateral that is added prior
to the malicious collateral, since the token transfer instruction in WithdrawCollateral and the
SeizeCollateral instruction will fail.

Proof of Concept

Consider the following scenario:

1. A borrower creates a borrow request using the InitializeBorrowRequest instruction.

2. The borrower adds one ormore collateral tokens to the borrow request using theAddCollateral
instruction.

3. Amalicioususer thenaddscollateral using theAddCollateral instructionwithacollateral_mint
of their own and a source token account. The tokens are transferred from source token account to
the token supply (PDA).

4. The malicious user now freezes the token supply PDA account.

5. This prevents both the borrower and the lender from taking the collateral that is added prior to the
malicious collateral.

Remediation

To remediate this vulnerability, implement the WithdrawCollateral and SeizeCollateral in-
structions such that they are independent of their order. For example, one could take the index of the col-
lateral and use it to generate thecollateral_token_account PDA in theWithdrawCollateral
and SeizeCollateral instructions.

Patch

Changed so that only the borrower can add collateral. Fixed in #3

© 2022 OtterSec LLC. All Rights Reserved. 11 / 25

https://github.com/akitafinance/akita/pull/3

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns, and could introduce a vulnerability in the
future.

ID Status Description

OS-AKT-SUG-00 Resolved Close the edit proposal accounts to save the rent amount for the pro-
poser.

OS-AKT-SUG-01 Resolved Bumps are unnecessarily taken as input parameters.

OS-AKT-SUG-02 Resolved An AcceptBorrowRequest instruction can be modified by the bor-
rower after the user accepts.

OS-AKT-SUG-03 Resolved The duration parameter in borrow_request.params should be
checked to ensure it is greater than 0.

OS-AKT-SUG-04 Resolved The InitializeFeeReceiver instruction can be replaced by using
the associated token account.

OS-AKT-SUG-05 Resolved The fee receiver receives less fee due to floor division in fee calculation.

OS-AKT-SUG-06 Resolved Using a constraint to check the borrow request of an edit proposal in the
AcceptEditProposal instruction.

© 2022 OtterSec LLC. All Rights Reserved. 12 / 25

Akita Audit 05 | General Findings

OS-AKT-SUG-00 [resolved] | Closing Edit Proposals

Description

The edit_proposal PDA accounts are created by taking the rent amount from the proposer. Those
accounts should be properly closed and the rent amount should be sent back to the proposer.

Remediation

The edit_proposal accounts should be closed as part of the AcceptEditProposal instruction
and the rent amount sent back to the proposer.

Alternatively, add aCancelEditProposal instruction to close the edit proposals that are not accepted.
The rent expended there should be sent back to the proposer as well.

Patch

Added a new instruction to close EditProposal in 0e9d501

© 2022 OtterSec LLC. All Rights Reserved. 13 / 25

https://github.com/akitafinance/akita/commit/0e9d5014fe3e9b3f1987b43c3683caf8b682ef05

Akita Audit 05 | General Findings

OS-AKT-SUG-01 [resolved] | Unnecessary Use of Bumps

Description

The token_supply_bump in the WithdrawCollateral and SeizeCollateral instructions is
unnecessary. The fee_receiver_bump and market_bump in the WithdrawFee and
AcceptBorrowRequest instructionsareunnecessary. Themarket_bump in theInitializeMarket
instruction is unnecessary.

Remediation

The unnecessary bumps taken as input parameters should be removed.

Patch

Removed unnecessary bumps in 55edbda

© 2022 OtterSec LLC. All Rights Reserved. 14 / 25

https://github.com/akitafinance/akita/commit/55edbdab77a72843caab4b8820a2300e0913b332

Akita Audit 05 | General Findings

OS-AKT-SUG-02 [resolved] | Missing AcceptBorrowRequest Slippage Checks

Description

The AcceptBorrowRequest instruction has no way to check for changes between accepting the re-
quest on the frontend, and submitting the transaction. For example, the borrower could reduce the
interest, increase the duration, or change the borrow amount.

Remediation

Take theborrowrequestparametersandcollateraldata fromthe lenderas inputdata in theAcceptBorrowRequest
instruction and verify whether they are same as the borrow_request.params and associated collat-
eral.

Patch

Accept a new parameter in AcceptBorrowRequest that double checks borrow request parameters in
bf16d82

© 2022 OtterSec LLC. All Rights Reserved. 15 / 25

https://github.com/akitafinance/akita/commit/bf16d82ea7f36b6dbaf7eb289734d8cbaa1f24d1

Akita Audit 05 | General Findings

OS-AKT-SUG-03 [resolved] | Borrow request duration should not be 0

Description

The duration parameter in borrow_request.params should be checked to ensure it is greater than 0.

Remediation

The check duration > 0 should be added to the is_valid function in the borrow request parame-
ters.

Patch

Added a duration > 0 check in is_valid function of borrow request parameters in f61fe72

© 2022 OtterSec LLC. All Rights Reserved. 16 / 25

https://github.com/akitafinance/akita/commit/f61fe72e6c3e218526510782af3689d15cfcba83

Akita Audit 05 | General Findings

OS-AKT-SUG-04 [resolved] | Use Associated Token Account

Description

Instead of using the InitializeFeeReceiver instruction to create a PDA for the fee receiver token
account, an associated token account can be used in the AcceptBorrowRequest instruction with
associated_token::authority set toakita_authority. Thisway there is noneed to initialize
a fee receiver PDA token account.

Remediation

Use an associated token account in the AcceptBorrowRequest instruction.

RUST

pub struct AcceptBorrowRequest<'info> {
// ...

#[account(
seeds = [b"Authority"],
bump

)]
/// CHECK: we don't do checking since it is authority.
pub akita_authority: UncheckedAccount<'info>,

#[account(
init_if_needed,
payer = payer,
associated_token::mint = loan_token_mint,
associated_token::authority = akita_authority,

)]
pub fee_receiver: Box<Account<'info, TokenAccount>>,

#[account(mut)]
pub payer: Signer<'info>,

// ...
}

Patch

Akita acknowledges the finding but doesn’t believe it has security implications. However, theymay deploy
a fix to address it.

© 2022 OtterSec LLC. All Rights Reserved. 17 / 25

Akita Audit 05 | General Findings

OS-AKT-SUG-05 [resolved] | Calculating Borrow Fee Does Floor Division by
Default

Description

The calculate_borrow_fee function in state.rs is used to calculate the fee that is sent to the fee
receiver. The checked_div by default floors the decimal value, which results less tokens being sent as
the fee when the division results in fractional numbers.

Consider the following values for calculating fee:

expected_repay_amount = 10001
borrow_amount = 10000
borrow_fee_bips = 1000
interest = 10009 - 10000 = 9
fee = (interest * borrow_fee_bips) / 10000
fee = (9 * 1000) / 10000 = 9000 / 10000 = 0.9

Since the fee is floored, the 0.9 token fee will become 0.

Remediation

Use ceiling division via spl_math::checked_ceil_div instead of checked_div.

Patch

Akita acknowledges the finding but doesn’t believe it has security implications. However, theymay deploy
a fix to address it.

© 2022 OtterSec LLC. All Rights Reserved. 18 / 25

Akita Audit 05 | General Findings

OS-AKT-SUG-06 [resolved] | Checking Borrow Request for Edit Proposal

Description

A constraint to check for the borrow_request of an edit proposal in AcceptEditProposal instruc-
tion should be added to ensure that the edit proposal belongs to the given borrow request. Note that
this is already implicitly enforced through the PDA seeds, but this additional constraint would be good to
implement as defense in depth.

Remediation

Add the constraintedit_proposal.borrow_request == borrow_request.key()asa check
in the AcceptEditProposal instruction.

Patch

Added an additional constraint in ac2637a.

© 2022 OtterSec LLC. All Rights Reserved. 19 / 25

https://github.com/akitafinance/akita/commit/ac2637abc400bfc403b73f461f6f3d1f741ba5c1

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

akita/
Cargo.toml 1e2cded07bc35570f4b5d88e2ea92087c43e1302
Xargo.toml 815f2dfb6197712a703a8e1f75b03c6991721e9e
src/
events.rs 3dd336df765f2158fc6b824e3bdfbe8b258896c8
lib.rs 030df9ddaae281f83c05a2d11b4413e097d35c53
macros.rs 5ba6f1f41ebe3e357b6b229fdf9b3539ceb435af
state.rs ed604e3458abffd9a371acd8d616a2de87a6379b
instructions/

accept_borrow_request.rs b3f66f71d28de196fbddd2d963b5099a79ea7c12
accept_edit_proposal.rs 273eca53ad5bd69bdbb60e6671363aad96018a12
add_collateral.rs 5af7e966df2a1daee30b766018d963adced56d4e
close_borrow_request.rs 7ae3f4846abbe5a83afc4f2f885e375397690b40
create_edit_proposal.rs 2aed5d5b9d2be27c85b7b991bdf82ea95775e2d6
initialize_borrow_request.rs c11447bc7292d0639eb573ea42a92710c23854ab
initialize_fee_receiver.rs c9f5528655788e1622cb90eccb4b8ffc6752ea72
initialize_market.rs 5102a80afc4388276fdc7adc3d57ca1bc51cf30d
mod.rs 0f396bd207bb7b602d3561833d155215c993fe00
repay_loan.rs 6402bd51d3c840122721a70108bf515294ac2fdd
seize_collateral.rs 54eab105bf520bd674000dcc9a346357c2335e30
withdraw_collateral.rs b607a3dbfc204380bf2409de5b676622843ba0ce
withdraw_fee.rs 8fc3365a614add72be57934599af5f1caf90324e
withdraw_repaid_fund.rs 48b27170450bec307c2390620a839aaabbad93eb

© 2022 OtterSec LLC. All Rights Reserved. 20 / 25

B | Proof of Concepts
Below are the provided proof of concept files and their corresponding SHA256 hashes.

pocs/
os-akt-adv-00/
hash 9bce042b4c8c705ab29258971ac7fade5199c02a
patch 02613bc6c37081f38f54a653a41a458cd3cdf7ab
run.sh ade30af485cbf5d780ccb2d9997cc5e0288ae3fe

os-akt-adv-01/
hash 9bce042b4c8c705ab29258971ac7fade5199c02a
patch e3f0d5e5edbe8c9a537aa0731b99e5946e6cfa4f
run.sh ade30af485cbf5d780ccb2d9997cc5e0288ae3fe

os-akt-adv-02/
hash 9bce042b4c8c705ab29258971ac7fade5199c02a
patch 797d27197f1f36274e7fa67c90688d0d37ff59a1
run.sh ade30af485cbf5d780ccb2d9997cc5e0288ae3fe

os-akt-adv-03/
hash 9bce042b4c8c705ab29258971ac7fade5199c02a
patch bfeea43f59ee1b96688638f08a752266fb0b2f15
run.sh ade30af485cbf5d780ccb2d9997cc5e0288ae3fe

os-akt-adv-04/
hash 9bce042b4c8c705ab29258971ac7fade5199c02a
patch f2e65980caee707fcdcb0681a861b52a64e77d1d
run.sh ade30af485cbf5d780ccb2d9997cc5e0288ae3fe

© 2022 OtterSec LLC. All Rights Reserved. 21 / 25

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 22 / 25

Akita Audit C | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 23 / 25

D | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle-which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix C.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions, both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 24 / 25

E | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 25 / 25

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Proofs of Concept

	Vulnerabilities
	OS-AKT-ADV-00 [crit] [resolved] | Missing Loan Recipient Account Check
	OS-AKT-ADV-01 [crit] [resolved] | Improperly Validated Lender Account
	OS-AKT-ADV-02 [high] [resolved] | Improper Collateral Bump Checks
	OS-AKT-ADV-03 [high] [resolved] | Improper Collateral Amount Checks
	OS-AKT-ADV-04 [high] [resolved] | Unsound collateral design

	General Findings
	OS-AKT-SUG-00 [resolved] | Closing Edit Proposals
	OS-AKT-SUG-01 [resolved] | Unnecessary Use of Bumps
	OS-AKT-SUG-02 [resolved] | Missing AcceptBorrowRequest Slippage Checks
	OS-AKT-SUG-03 [resolved] | Borrow request duration should not be 0
	OS-AKT-SUG-04 [resolved] | Use Associated Token Account
	OS-AKT-SUG-05 [resolved] | Calculating Borrow Fee Does Floor Division by Default
	OS-AKT-SUG-06 [resolved] | Checking Borrow Request for Edit Proposal

	Appendices
	Program Files
	Proof of Concepts
	Implementation Security Checklist
	Procedure
	Vulnerability Rating Scale

