Convergence

Audit

ed by:

OtterSec contact@osec.io
Robert Chen notdeghost@osec.io

Akash Gurugunti sudoussrak@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:Sud0u53r.ak@osec.io

Contents

01 Executive Summary 2
OVEIVIEW . . o o o e e e e e e e e e e e 2
Key FIndings o o e e e e e e e 2

02 Scope 3

03 Findings 4
Proofof Concepts o o i i e e e e e 4

04 Vulnerabilities 6
OS-CVG-ADV-00 [high] | Cancel Instruction Works on Confirmed RFQ 7
0S-CVG-ADV-01 [low] | Unchecked psy_american_program Address 9

05 General Findings 11
0S-CVG-SUG-00 | Reduced Fee Due To Miscalculation 12
0S-CVG-SUG-01 | Unnecessary Owner Checks for State Accounts 13
0S-CVG-SUG-02 | Unnecessary Treasury Wallet Field in Protocol State 14
0S-CVG-SUG-03 | Missing Check During Fee Initialization. 15
OS-CVG-SUG-04 | Taker Can Cancel RFQs With Responses 17
0S-CVG-SUG-05 | Taker Can Confirm Cancelled RFQs o 18

Appendices

A Program Files 20
B Proof of Concepts 21
C Procedure 22
D Implementation Security Checklist 23
E Vulnerability Rating Scale 25

© 2022 OtterSec LLC. All Rights Reserved. 1/25

01 ‘ Executive Summary

Overview

Convergence engaged OtterSec to perform an assessment of the convergence-rfq program.
This assessment was conducted between 0th and 0th, 0.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, we worked closely with the team over to streamline patches
and confirm remediation.

We delivered final confirmation of the patches [not yet delivered].

Key Findings
The following is a summary of the major findings in this audit.

+ 8findings total

« 2 vulnerabilities which could lead to loss of funds
- 0S-CVG-ADV-00: Tokens locked in escrow account forever
- ?2: Reduces fee due to miscalculation

As part of this audit, we also provided proof of concepts for each vulnerability to prove exploitability and
enable simple regression testing. These scripts can be found at github.com/otter-sec/convergence-rfqg-rfg-
pocs. For a full list, see Appendix B.

© 2022 OtterSec LLC. All Rights Reserved. 2/25

https://github.com/otter-sec/convergence-rfq-rfq-pocs
https://github.com/otter-sec/convergence-rfq-rfq-pocs

02 ‘ Scope

The source code was delivered to us in a git repository at github.com/convergence-rfq/rfq. This audit was

performed against commit 9a64a06.

There was a total of one program included in this audit. A brief description of the programs is as follows. A
full list of program files and hashes can be found in Appendix A.

Name Description

rfq A DeFi primitive for over the counter transactions with no price slippage.

© 2022 OtterSec LLC. All Rights Reserved. 3/25

https://github.com/convergence-rfq/rfq

03 ‘ Findings

Overall, we report 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical
High

Low
Informational

Proof of Concepts

For each vulnerability we created a proof of concept to enable easy regression testing. We recommend
integrating these as part of a comprehensive test suite. The proof of concept directory structure can be
found in Appendix B.

A GitHub repository containing these proof of concepts can be found at osec.io/pocs/convergence-rfq.

TorunaPOC:

./run.sh <directory name>

For example,

© 2022 OtterSec LLC. All Rights Reserved. 4/25

https://osec.io/pocs/convergence-rfq

Convergence Audit 03 | Findings

./run.sh os-cvg-adv-00

Each proof of concept comes with its own patch file which modifies the existing test framework to demon-
strate the relevant vulnerability. We also recommend integrating these patches into the test suite to
prevent regressions.

© 2022 OtterSec LLC. All Rights Reserved. 5/25

04 ‘ Vulnerabilities

Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix E.

ID Severity Status Description

0S-CVG-ADV-00 High TODO Cancelinstruction works even after the RFQ is confirmed that
enables taker to lock maker tokens in escrow account.

0S-CVG-ADV-01 Low TODO CPI call being made to unchecked program address.

© 2022 OtterSec LLC. All Rights Reserved. 6/25

Convergence Audit 04 | Vulnerabilities

OS-CVG-ADV-00 [high] | Cancel Instruction Works on Confirmed RFQ

Description

An RFQ can be cancelled by the taker even after the RFQ is confirmed. This enables the taker to confirm an
order, settle the order using the Settle instruction and then cancel the RFQ using Cancel instruction,
which prevents the maker from settling their order, because Settle instruction prevents settling for
cancelled RFQs. This results in permanent locking of maker funds in the escrow.

The code snippet below shows the access_control used for the cancel instruction which only checks if
signer is the taker of the RFQ and if the RFQ is not cancelled or expired yet.

rfq/src/access_control.rs

cancel_access_control<' >(ctx: &Context<Cancel<' >>) >
< Result<()> {
signer = ctx.accounts.signer.key();
rfq = &ctx.accounts.rfq;

authority = rfqg.authority.key();

require! (authority == signer, ProtocolError::InvalidAuthority);
require! (!rfqg.canceled, ProtocolError::InvalidCancel);
require! (
Clock::get().unwrap() .unix_timestamp < rfq.expiry,
ProtocolError: :RfgInactive

)3

Ok(())

Proof of Concept
Consider the following scenario:

1. Ataker creates an RFQ using Request instruction.

© 2022 OtterSec LLC. All Rights Reserved. 7/25

Convergence Audit 04 | Vulnerabilities

2. Amaker then responds to that RFQ using Respond instruction.

3. The taker then confirms, settles and cancels the RFQ using Confirm, Settle and Cancel in-
structions.

4. Now, if the maker tries to settle the RFQ using Settle, the transaction fails because cancelled
RFQs cannot be settled.

Remediation

Add a constraint to cancel_access_control that prevents a taker from cancelling a confirmed RFQ.

rfq/src/access_control.rs

pub fn cancel_access_control<'info>(ctx: &Context<Cancel<'info>>) ->
< Result<()> {
let signer = ctx.accounts.signer.key();
let rfq = &ctx.accounts.rfq;

let authority = rfg.authority.key();

require! (authority == signer, ProtocolError::InvalidAuthority);

require! (!rfg.canceled, ProtocolError::InvalidCancel);
require! (!rfqg.confirmed, ProtocolError::InvalidCancel);
require! (
Clock::get().unwrap() .unix_timestamp < rfq.expiry,
ProtocolError::RfgInactive

)5

Ok (())

Patch

© 2022 OtterSec LLC. All Rights Reserved. 8/25

Convergence Audit 04 | Vulnerabilities

OS-CVG-ADV-01 [low] | Unchecked psy_american_program Address

Description

In InitializeAmericanOptionMarket and MintAmericanOption instructions, the address
thatis passed to psy_amer-ican_programaccountis not being validated against any address. Making
a CPI call to arbitrary address can lead to unintended behaviors in the program.

In the below code snippets from the psyoptions, the psy_amer-ican_programaccount is not checked
against any predefined and any arbitrary program address can be passed to it.

rfq/src/psyoptions/context.rs

InitializeAmericanOptionMarket<'
user: Signer<'

psy_american_program: AccountInfo<'
underlying_asset_mint: Box<Account<' Mint>>,

rfq/src/psyoptions/context.rs

MintAmericanOption<' > {

authority: Signer<'

psy_american_program: AccountInfo<'

vault: Box<Account<' , TokenAccount>>,

Proof of Concept
Consider the following scenario:

1. Amalicious user calls MintAmericanOptioninstruction with psy_american_programset
to our own program address that exits successfully when called.

2. Hecansetthe leg.processed = true for any RFQ without even minting options tokens from
the psy_options market.

© 2022 OtterSec LLC. All Rights Reserved. 9/25

Convergence Audit 04 | Vulnerabilities

Remediation
Add a constraint to check the address of the psy_amer-ican_programaccount against a predefined

address.

Patch

© 2022 OtterSec LLC. All Rights Reserved. 10/25

05 ‘ General Findings

Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the

future.

ID

Status

Description

0S-CVG-SUG-00

0S-CVG-SUG-01

0S-CVG-SUG-02

0S-CVG-SUG-03

0S-CVG-SUG-04

0S-CVG-SUG-05

TODO

TODO

TODO

TODO

TODO

TODO

Improper formula used for fee calculation leads to significant reduction of
fee amount.

Unnecessary owner checks for state accounts.
Unnecessary treasury wallet field in protocol state.

A constraint to check if fee_numerator < fee_denominator in the protocol
state.

Cancel instruction doesn’t implement constraint that checks if an RFQ has
responses as mentioned in the docstring.

Confirm instruction allows taker to confirm cancelled RFQs.

© 2022 OtterSec LLC. All Rights Reserved. 11/25

337
338
339
340
341
342
343

Convergence Audit 05 | General Findings

OS-CVG-SUG-00 | Reduced Fee Due To Miscalculation

Description

In the Settle instruction, the fee_amount is calculated as

rfq/src/instructions.rs

fee_amount = (rfqg.order_amount)
.checked_div(protocol.fee_denominator
.ok_or(ProtocolError: :Math)?

.checked_mul(protocol. fee_numerator
.ok_or(ProtocolError: :Math)?
.to_u64()

.ok_or (ProtocolError::Math)?;

There are also some other instances where the fee_amount is calculated similarly. The problem with
this is that the fee_amount can be significantly lower than the precisely calculated value based on the
numerator and denominator values. For example,

let rfg.order_amount =99

let fee_numerator =15

let fee_denominator =100

fee_amount=(99/100) *15=0
While the precise fee_amount = 14.85. By doing multiplication before division will give more precise value
fee_amount=(99 * 15) /100 =14

Remediation

Change the fee calculation to do the multiplication before division.

© 2022 OtterSec LLC. All Rights Reserved. 12/25

Convergence Audit 05 | General Findings

OS-CVG-SUG-01 | Unnecessary Owner Checks for State Accounts

Description

Theaccountsintheinstructions that are specified using the syntax Account<'info, AccountState>
or Box<Account<'info, AccountState>> need not have a constraint that checks its owner, i.e.,
account.to_account_info().owner == program_id. Theanchorframeworkimplicitly checks
if the owner of the account is equal to the program address in which the AccountState struct is defined.

A sample of the affected code can be found in the snippet below.

rfq/src/contexts.rs

seeds = [PROTOCOL_SEED.as_bytes()],
bump = protocol.bump,

constraint = protocol.to_account_info().owner == program_id

)]

protocol: Account<' , ProtocolState>,

Remediation

Remove the unnecessary constraints on the state accounts.

© 2022 OtterSec LLC. All Rights Reserved. 13/25

Convergence Audit 05 | General Findings

OS-CVG-SUG-02 | Unnecessary Treasury Wallet Field in Protocol State

Description

The account to which the fee amount is transferred in the Sett1le instruction should be of the same mint
asthe asset_escroworthe quote_escrow based on the caller of the instruction. Since there can be
no fixed token account for collecting the fee, the treasury wallet token account field in the protocol state
is unusable.

The highlighted lines in the below code snippet can be removed.

rfq/src/state.rs

ProtocolState {
authority: Pubkey,
bump:
fee_denominator:

fee_numerator:

treasury_wallet: Pubkey,

Remediation

Remove the unnecessary treasury wallet field in the protocol state.

© 2022 OtterSec LLC. All Rights Reserved. 14 /25

Convergence Audit 05 | General Findings

OS-CVG-SUG-03 | Missing Check During Fee Initialization

Description

The fee_numerator should be less than the fee_denominator in the protocol state. If the fee_numerator
is greater than the fee_denominator, then while calculating fee_amount in the Settle instruction, the
rfq.order_amountorthe rfq.best_bid_amount isdivided by fee_denominator and multiplied
with fee_numerator resulting in fee_amount greater than the rfq.order_amount or rfq.best_bid_amount.

This results in the instruction fails while executing checked_sub that subtracts fee_amount from the
order_amount or best_bid_amount and renders the protocol unusable until it is changed again.

Remediation

Add a constraintin initialize_access_control and set_fee_access_control access con-
trol functions to check that fee_numerator < fee_denominator

rfq/src/access_control.rs

pub fn initialize_access_control<'info>(
_ctx: &Context<Initialize<'info>>,
fee_denominator: u64,
) —> Result<()> {
require! (fee_denominator > 0, ProtocolError::InvalidFee);
require! (fee_numerator < fee_denominator,
— ProtocolError::InvalidFee);

Ok(())

rfq/src/access_control.rs

pub fn set_fee_access_control<'info>(
ctx: &Context<SetFee<'info>>,
fee_denominator: u64,
) => Result<()> {
let signer = ctx.accounts.signer.key();
let authority = ctx.accounts.protocol.authority.key();

require! (signer == authority, ProtocolError::InvalidAuthority);

require! (fee_denominator > 0, ProtocolError::InvalidFee);
require! (fee_numerator < fee_denominator,
< ProtocolError::InvalidFee);

© 2022 OtterSec LLC. All Rights Reserved. 15/25

Convergence Audit 05 | General Findings

36 ok(())
37

© 2022 OtterSec LLC. All Rights Reserved. 16 /25

Convergence Audit 05 | General Findings

OS-CVG-SUG-04 | Taker Can Cancel RFQs With Responses

Description

In access control function forthe Cancelinstruction, itis not checking whether the RFQ has any responses
or not as mentioned in the docstring above the cancel_access_control (highlighted part in the
below code snippet). This allows a taker to cancel an RFQ which has responses.

rfq/src/access_control.rs

cancel_access_control<' >(ctx: &Context<Cancel<' >>) —>
< Result<()> {
sigher = ctx.accounts.signer.key();

Remediation

Add a constraint to check if the RFQ has responses.

rfq/src/access_control.rs

pub fn cancel_access_control<'info>(ctx: &Context<Cancel<'info>>) ->
< Result<()> {
let signer = ctx.accounts.signer.key();
let rfq = &ctx.accounts.rfq;

let authority = rfqg.authority.key();

require! (authority == signer, ProtocolError::InvalidAuthority);
require! (!rfqg.canceled, ProtocolError::InvalidCancel);

require! (rfqg.best_bid_amount.is_none() &&

- rfqg.best_ask_amount.is_none(), ProtocolError::InvalidCancel);
require! (

Clock::get().unwrap() .unix_timestamp < rfq.expiry,

ProtocolError: :RfgInactive

)3

Ok (())

© 2022 OtterSec LLC. All Rights Reserved. 17/25

Convergence Audit 05 | General Findings

OS-CVG-SUG-05 | Taker Can Confirm Cancelled RFQs

Description

In access control function for the Conf1 rminstruction, it is not checking whether the RFQ is cancelled
or not. This allows a taker to confirm a cancelled RFQ, which leads to locking of funds of both taker and
maker since Settle instruction doesn’t allow them to withdraw their funds from a cancelled RFQ.

It can be seen in the code snippet below, that the program does not check if the RFQ was cancelled before
confirming the order.

rfq/src/access_control.rs

174 confirm_access_control<' >(ctx: &Context<Confirm<'
quote: Quote) -> Result<()> {

175 order = &ctx.accounts.order;

176 rfq = &ctx.accounts.rfq;

177

178 taker = rfg.authority.key();

179 sigher = ctx.accounts.signer.key();

180

181 require! (rfq.key() == order.rfq.key(), ProtocolError::InvalidRfq);

182 require! (taker == signer, ProtocolError::InvalidTaker);

183 require! (!rfq.confirmed, ProtocolError::RfgConfirmed);

184 require! (

185 rfg.expiry > Clock::get().unwrap().unix_timestamp,

186 ProtocolError::RfgInactive
187)5
188

Remediation

Add a constraintin confirm_access_control to check if the RFQ is cancelled or not.

rfq/src/access_control.rs

i¥Z1 pub fn confirm_access_control<'info>(ctx: &Context<Confirm<'info>>,
<~ quote: Quote) -> Result<()> {

175 let order = &ctx.accounts.order;
176 let rfq = &ctx.accounts.rfq;

177

178 let taker = rfqg.authority.key();

© 2022 OtterSec LLC. All Rights Reserved. 18 /25

Convergence Audit 05 | General Findings

179 let signer = ctx.accounts.signer.key();

180

181 require! (rfq.key() == order.rfq.key(), ProtocolError::InvalidRfq);
182 require! (taker == signer, ProtocolError::InvalidTaker);

183 require! (!rfg.confirmed, ProtocolError::RfgConfirmed);

184 require! (!rfg.canceled, ProtocolError::RfgCanceled);

185 require! (

186 rfq.expiry > Clock::get().unwrap().unix_timestamp,

187 ProtocolError::RfgInactive

188)

© 2022 OtterSec LLC. All Rights Reserved. 19/25

A ‘ Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

rfq/
Cargo.toml
Xargo.toml
src/
access_controls.rs
constants.rs
contexts.rs
errors.rs
instructions.rs
lib.rs
states.rs
psyoptions/
contexts.rs
instructions.rs
mod.rs

© 2022 OtterSec LLC. All Rights Reserved.

99308fd40abd483616ebd9ac67c51f04a549a1f6c0d6811bb24d1d0c27290089
815f2dfb6197712a703a8el1f75b03c6991721e9eb7c40dfaec8bOb49da4aab29

7b22f351cdeda6fobf496fecdbd3919f4767264b51bef8e593ebfa9e3dcf5a6e
cb4dd0e9b7579dfa5745da89aca2b7685780dccc2c6d048d63baclcb46ed30cd
709a654d0fa8100fh207802b3129e6¢cb6ab7d7d345d3fe43a34ebe8de8cOldad
6841ffb998519242a4ea9bc4f9da9b088369beOb1096245c9d4bbb6e91e6labcOd
bfl13fdfafe35c6eef4c362f2d02c51b501242b0605a392bc3833c2f7cf6ccach
9668b15e1b3afc9b425c3b003c645ddf348fh39d246e171f942612d06fda46c72
808950ac95d51f8bf5fe9f0633082ac9f506ad17954f3abd9ad214272¢cb50e5b

86bae8eaf2130clebce48e5a5f9fdf5032ab542cfd02f636b51efa2c18f59688

2b5fd96a92f5c75fd5afac136220e2444454b24801def5f0360f242fcde04841
868504e67aec4al89¢c383214937557f42c048873043b686fc9d6cf49bbc51898

20/25

B ‘ Proof of Concepts

Below are the provided proof of concept files and their corresponding SHA256 hashes.

pocs/
os-cvg-adv-00/
hash 0427381fdc7c519b3eb647fed2cecad67c4c659721a66b272fd6d7f3f55c8103
patch ea23bbfb9765f376cc04ef297580ae20f999a5f97bfffc3fcad441fd48ff06e4b
run.sh 52a74eed37d4cee96a21e3a50182b758785054e9b637c1d20409ec813d27eca9

© 2022 OtterSec LLC. All Rights Reserved. 21/25

C | Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could be manipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix D.

Implementation vulnerabilities tend to be more “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 22/25

D | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or Unconstrained input sizes could lead to integer over or underflows, causing
overflows potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 23/25

Convergence Audit

D | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous
Libraries Out of date libraries should not include any publicly disclosed vulnerabilities
Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 24/25

E | Vulnerability Rating Scale

Werated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings can be found in the General Findings section.

Critical

High

Low

Informational

Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

+ Misconfigured authority/token account validation
+ Rounding errors on token transfers

Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

+ Loss of funds requiring specific victim interactions
+ Exploitation involving high capital requirement with respect to payout

Vulnerabilities which could lead to denial of service scenarios or degraded usability.
Examples:

« Malicious input cause computation limit exhaustion
+ Forced exceptions preventing normal use

Low probability vulnerabilities which could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

+ Explicit assertion of critical internal invariants
+ Improved input validation
+ Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 25/25

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Proof of Concepts

	Vulnerabilities
	OS-CVG-ADV-00 [high] | Cancel Instruction Works on Confirmed RFQ
	OS-CVG-ADV-01 [low] | Unchecked psy_american_program Address

	General Findings
	OS-CVG-SUG-00 | Reduced Fee Due To Miscalculation
	OS-CVG-SUG-01 | Unnecessary Owner Checks for State Accounts
	OS-CVG-SUG-02 | Unnecessary Treasury Wallet Field in Protocol State
	OS-CVG-SUG-03 | Missing Check During Fee Initialization
	OS-CVG-SUG-04 | Taker Can Cancel RFQs With Responses
	OS-CVG-SUG-05 | Taker Can Confirm Cancelled RFQs

	Appendices
	Program Files
	Proof of Concepts
	Procedure
	Implementation Security Checklist
	Vulnerability Rating Scale

