
Audit
Socean

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

mailto:contact@osec.io
mailto:notdeghost@osec.io
mailto:Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Procedure 4

04 Findings 5
Proof of Concepts . 5

05 Vulnerabilities 7
OS-SOC-ADV-00 [med] [TODO] | Auction authority controls auction in unintended way 8

06 General Findings 9
OS-SOC-SUG-00 | Use saturating_sub instead . 10
OS-SOC-SUG-01 | Account unnecessarily taken as input . 11
OS-SOC-SUG-02 | owner = id() is not necessary . 12

Appendices

A Program Files 14

B Proof of Concepts 15

C Implementation Security Checklist 16

D Vulnerability Rating Scale 18

© 2022 OtterSec LLC. All Rights Reserved. 1 / 18

01 | Executive Summary

Overview

Socean engaged OtterSec to perform an assessment of the descending-auction-program and
bonding programs.

This assessment was conducted between May 30th and June 8th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation.

We delivered final confirmation of the patches [not yet delivered].

Key Findings

The following is a summary of the major findings in this audit.

• 4 findings total
• No loss of funds issues

As part of this audit, we also provided proofs of concept for each vulnerability to prove exploitability and
enable simple regression testing. These scripts can be found at https://osec.io/pocs/socean-pocs. For a
full list, see Appendix B.

© 2022 OtterSec LLC. All Rights Reserved. 2 / 18

https://osec.io/pocs/socean-pocs

02 | Scope
The source code was delivered to us in a git repository at github.com/igneous-labs/descending-auction-
program and github.com/igneous-labs/bonding. This audit was performed against commits 3e1deb6
and 439c88d respectively.

There were a total of 2 programs included in this audit. A brief description of the programs is as follows. A
full list of program files and hashes can be found in Appendix A.

Name Description

descending-auction-program An auction that descends in price over time.
bonding Token vesting with underlying bonded tokens.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 18

https://github.com/igneous-labs/descending-auction-program
https://github.com/igneous-labs/descending-auction-program
https://github.com/igneous-labs/bonding

03 | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix C.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 4 / 18

04 | Findings
Overall, we report 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 0
High 0

Medium 1
Low 0

Informational 3

Proof of Concepts

For each vulnerability we created a proof of concept to enable easy regression testing. We recommend
integrating these as part of a comprehensive test suite. The proof of concept directory structure can be
found in Appendix B.

A GitHub repository containing these proofs of concept can be found at https://osec.io/pocs/socean-pocs.

To run a POC:

SH

./run.sh <directory name>

For example,

© 2022 OtterSec LLC. All Rights Reserved. 5 / 18

https://osec.io/pocs/socean-pocs

Socean Audit 04 | Findings

SH

./run.sh os-soc-adv-00

Each proof of concept comes with its own patch file which modifies the existing test framework to demon-
strate the relevant vulnerability. We also recommend integrating these patches into the test suite to
prevent regressions.

© 2022 OtterSec LLC. All Rights Reserved. 6 / 18

05 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix D.

ID Severity Status Description

OS-SOC-ADV-00 Medium TODO Payment destination account controlled by the auction author-
ity can give author power to close auction while it is still in
progress

© 2022 OtterSec LLC. All Rights Reserved. 7 / 18

Socean Audit 05 | Vulnerabilities

OS-SOC-ADV-00 [med] [TODO] | Auction authority controls auction in unin-
tended way

Description

In theInitializeAuction instruction, theauthorityof theauctionsets thepayment_destination
account for the auction to receive payments.

Since this account is controlled by the authority, the authority may close this account, temporarily closing
the auction by failing the subsequent transfer in the Purchase instruction.

Proof of Concept

Consider the following scenario:

1. Create an auction and set the payment_destination token account that can be controlled by
the authority.

2. Now, while the auction state is InProgress, close the payment_destination token account.
3. Try to call the Purchaseinstruction as a user trying to purchase some sale tokens.

The Purchaseinstruction will fail, since payment tokens cannot be sent to a closed account.

Remediation

Possible ways to avoid the above mentioned scenario:

1. The payment_destination account can be set as a PDA generated with auction.key() as
seed. Then another instruction can be written that checks the authority of the auction and lets him
transfer the tokens from payment_destination account to specified account.

2. The payment_destination account can be set as a PDA generated with auction.key() as
seed, and then delegate u64::MAX amount to authority specified account using the Approvein-
struction.

Patch

© 2022 OtterSec LLC. All Rights Reserved. 8 / 18

06 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Description

OS-SOC-SUG-00 Using saturating_sub instead of writing an if condition in auction program

OS-SOC-SUG-01 Unnecessary account input to DepositToAuctionPool ix in auction program

OS-SOC-SUG-02 Unnecessary explicit specification of owner = id() in Initialize and Vest ix in
bonding program

© 2022 OtterSec LLC. All Rights Reserved. 9 / 18

Socean Audit 06 | General Findings

OS-SOC-SUG-00 | Use saturating_sub instead

Description

In Purchase instruction, at line 120, the value of t is calculated as t - dt, if t > dt, otherwise 0. This
can be rewritten using saturating_sub.

descending-auction-program/src/instructions/purchase.rs RUST

let t = if t > dt {
t.checked_sub(dt)

} else {
Some(0)

}.ok_or(AuctionError::InternalError)?;

Remediation

The above code can be rewritten as follows using the saturating_submethod:

descending-auction-program/src/instructions/purchase.rs RUST

let t = t.saturating_sub(dt);

© 2022 OtterSec LLC. All Rights Reserved. 10 / 18

Socean Audit 06 | General Findings

OS-SOC-SUG-01 | Account unnecessarily taken as input

Description

In DepositToAuctionPool ix, the auction_authority account is taken as input but not used anywhere in
the run function. It is used only to check the auction_pool.owner, which is an unnecessary constraint,
because auction_pool is a PDA generated using auction.key() and auction.sale_mint as seeds, so it will
be unique to an auction just like auction_authority. Since the owner of the auction_pool is only set in
InitializeAuction ix, the owner check here is unnecessary.

Remediation

The constraint in the auction_pool checking for the owner of the auction_pool can be removed and the
auction_authority account can be removed from the DepositToAuctionPool ix as well.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 18

Socean Audit 06 | General Findings

OS-SOC-SUG-02 | owner = id() is not necessary

Description

For bond_pool account in Initialize ix and for vesting account in Vest ix, the owner is explicitly set to id().

bonding/src/instructions/initialize_bond_pool.rs RUST

pub struct Initialize<'info> {
// ...
#[account(

init,
payer = owner,
space = BondPool::LEN,
owner = id()

)]
pub bond_pool: Account<'info, BondPool>,
// ...

}

bonding/src/instructions/vest.rs RUST

pub struct Vest<'info> {
// ...
#[account(

init,
payer = payer,
space = Vesting::LEN,
owner = id(),
seeds = [

BONDING_PREFIX,
VESTING_PREFIX,
&bond_pool.key().to_bytes(),
&user.key().to_bytes(),
&[seed]

],
bump,

)]
pub vesting: Account<'info, Vesting>,
// ...

}

© 2022 OtterSec LLC. All Rights Reserved. 12 / 18

Socean Audit 06 | General Findings

Remediation

The ”owner = id()” can be removed, because the owner of the structs defined in the programwill be set to
program_id by the anchor.

© 2022 OtterSec LLC. All Rights Reserved. 13 / 18

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

descending-auction-program/
Cargo.toml 30e522ae6a258ae84c6a5b0398335fff
Xargo.toml 815f2dfb6197712a703a8e1f75b03c69
src
curves.rs b657041d55beb15a8927baa47a9205e9
errors.rs 7064d4e9005cbe520bbaf06f9dc885fb
lib.rs 9461bfc1f6baf1b7e24eea14e0c4ed86
state.rs 65255167c3974cead7621df00c3eeb40
instructions

close_auction.rs 1a12ef7891d15bb0a6447aba8d31f0f5
deposit_to_auction_pool.rs 67136050edf226a2422b37a895fd394a
initialize_auction.rs e8f9e39ae78eeefd35b78f86b0966cd1
mod.rs 6e80a4c685ff29a4fc911901ec81b818
purchase.rs 19a4f12d1bd9ca71658f45e70878bf01
update_authority.rs 3c5ce8ab581c0c9034463621b8be202f
update_ceil_price.rs b32db34f468e81a9317cdd96e55f92fd
update_end_time.rs 4b6e19eb373750d1cb4b892c9e1d3931
update_floor_price.rs 839de0d9daa9253b8f50f47c985c8dc8
update_start_time.rs b398c8a976d05e3c1bc9603ea5191a95

bonding/
Cargo.toml a71316c342593540ac2d13708b062a77
Xargo.toml 815f2dfb6197712a703a8e1f75b03c69
src
errors.rs 0766d6cc0e74cde2cd193b47b51f7a89
lib.rs 2646ec346a39a951f99d5206cf9a3f27
validators.rs e972c4696285e5fc571357397d7381eb
instructions

cancel_vest.rs 8d40b604891d0e1095be833a922042f5
claim.rs 327544f7af03cd65640f749265c355c9
deposit.rs 01c1ff2da23a1b0d463923715c905247
initialize_bond_pool.rs 39c871306ccfb9f6717233cfb77b2598
mod.rs 3c26e47f77c93fbac4db6b7cd4344632
set_owner.rs 48166cc3a23d1900fbc532425cb263cc
set_vesting_seconds.rs 89c5f9d20c976a3381eb934c23edfa95
vest.rs 3ec271ee34f1efbaf2da4b0425ccc527

state
bond_pool.rs c6a437e1f3a0b32b9f65318d04ba8c68
mod.rs 524e733168436b78d63da0ae1ea311ad
vesting.rs bb21270650dbefd0e631c1441e97f731

© 2022 OtterSec LLC. All Rights Reserved. 14 / 18

B | Proof of Concepts
Below are the provided proof of concept files and their corresponding SHA256 hashes.

os-soc-adv-00
hash e6e84f47f846889a1a6fba17f22b87fc
patch e0ff075baa268ceb2118fd25ce638126
run.sh 04ffe52fa5854c3a44a27223670abe29

© 2022 OtterSec LLC. All Rights Reserved. 15 / 18

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 16 / 18

Socean Audit C | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 17 / 18

D | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Procedure
	Findings
	Proof of Concepts

	Vulnerabilities
	OS-SOC-ADV-00 [med] [TODO] | Auction authority controls auction in unintended way

	General Findings
	OS-SOC-SUG-00 | Use saturating_sub instead
	OS-SOC-SUG-01 | Account unnecessarily taken as input
	OS-SOC-SUG-02 | owner = id() is not necessary

	Appendices
	Program Files
	Proof of Concepts
	Implementation Security Checklist
	Vulnerability Rating Scale

