
Audit
Squads

Presented by:

OtterSec contact@osec.io

Robert Chen notdeghost@osec.io

Akash Gurugunti Sud0u53r.ak@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-SQD-ADV-00 [low] [resolved] | Incorrect Threshold Checks 6

05 General Findings 8
OS-SQD-SUG-00 [resolved] | Improper Space Calculation at Creation 9
OS-SQD-SUG-01 [resolved] | Enforce Signed Multisig Program 11
OS-SQD-SUG-02 [resolved] | General Refactoring and Code Duplication 12
OS-SQD-SUG-03 [resolved] | Potential Unnecessary Call to Transfer 14

Appendices

A Program Files 15

B Procedure 16

C Implementation Security Checklist 17

D Vulnerability Rating Scale 19

© 2022 OtterSec LLC. All Rights Reserved. 1 / 19

01 | Executive Summary

Overview

Squads engaged OtterSec to perform an assessment of the squads-mpl program.

This assessment was conducted between July 12th and July 21st, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation.

We delivered final confirmation of the patches [not yet delivered].

Key Findings

The following is a summary of the major findings in this audit.

• 5 findings total
• No vulnerabilities which could lead to loss of funds

We also observed the following.

• Code quality of the programwas high and overall design was solid
• The teamwas very knowledgeable and responsive to our feedback

© 2022 OtterSec LLC. All Rights Reserved. 2 / 19

02 | Scope
The source code was delivered to us in a git repository at github.com/squads-dapp/squads-mpl/. This
audit was performed against commit dea44c5.

There was a total of one program included in this audit. A brief description of the program is as follows. A
full list of program files and hashes can be found in Appendix A.

Name Description

squads-mpl Onchain multisig
program-manager Utility program tomanage program deployments

© 2022 OtterSec LLC. All Rights Reserved. 3 / 19

03 | Findings
Overall, we report 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 0
High 0

Medium 0
Low 1

Informational 4

© 2022 OtterSec LLC. All Rights Reserved. 4 / 19

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix D.

ID Severity Status Description

OS-SQD-ADV-00 Low Resolved Threshold checks do not account for duplicate members.

© 2022 OtterSec LLC. All Rights Reserved. 5 / 19

Squads Audit 04 | Vulnerabilities

OS-SQD-ADV-00 [low] [resolved] | Incorrect Threshold Checks

Description

The threshold for multisig approval should never be greater than the number of members. The create
instruction verifies this by comparing it against the length of the members vector, which is passed in as
an argument.

lib.rs RUST

20 // since creator is considered a member, check we don't exceed u16 -
very unlikely↪→

21 let total_members = members.len();
22 if total_members < 1 {
23 return err!(MsError::EmptyMembers);
24 }
25

26 //make sure we don't exceed on first call - not likely but this shoudl
be here↪→

27 if total_members > usize::from(u16::MAX) {
28 return err!(MsError::MaxMembersReached);
29 }
30

31 //make sure threshold is valid
32 if !(1..=total_members).contains(&usize::from(threshold)) {
33 return err!(MsError::InvalidThreshold);
34 }

However, these checks are conducted before duplicate members are removed, an action which would
reduce the vector’s length.

lib.rs RUST

36 // check that the creator isn't in the member list, they'll be added
automatically↪→

37 let mut members = members;
38 members.sort();
39 members.dedup();

If duplicate members are passed into the instruction, it is possible for the resulting multisig to have an
impossibly high threshold.

© 2022 OtterSec LLC. All Rights Reserved. 6 / 19

Squads Audit 04 | Vulnerabilities

Proof of Concept

Consider the following scenario:

1. Alice calls the create instruction with a threshold of 5 and a members vector consisting of one
public key repeated 10 times.

The resulting multisig has 1 member, yet the threshold is 5.

Remediation

The create instruction should sort and remove duplicate members before performing other checks.

Patch

Resolved in 3c2139c.

© 2022 OtterSec LLC. All Rights Reserved. 7 / 19

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Status Description

OS-SQD-SUG-00 Resolved Improper space calculations leads to confusing errors on creation

OS-SQD-SUG-01 Resolved Missing program_id check for transactions with an
authority_index equal to 0.

OS-SQD-SUG-02 Resolved General refactoring to improve readability.

OS-SQD-SUG-03 Resolved Avoid an unnecessary call to the system transfer for zero lamports

© 2022 OtterSec LLC. All Rights Reserved. 8 / 19

Squads Audit 05 | General Findings

OS-SQD-SUG-00 [resolved] | Improper Space Calculation at Creation

Description

The space initially allocated for theMs state account should dependon the number ofmembers at creation.
Furthermore, it does not check whether the provided data would exceed capacity.

However, the program allocates a fixed amount, which is implicitly enough for 10 members.

squads-mpl/src/state/ms.rs RUST

impl Ms {
pub const SIZE_WITHOUT_MEMBERS: usize = 8 + // Anchor disriminator
2 + // threshold value
2 + // authority index
4 + // transaction index
4 + // processed internal transaction index
1 + // PDA bump
32 + // creator
1 + // allow external execute
4; // for vec length

pub const MAXIMUM_SIZE: usize = (32 * 10) +
Self::SIZE_WITHOUT_MEMBERS; // initial space for 10 keys↪→

Remediation

Modify thespace constraint in theCreate struct to use a dynamic value that is dependent onmembers
rather than a fixed constant.

Alternatively, return a more explicit error when exceeding the implicit 10 member threshold.

Patch

Dynamically calculate Ms space, fixed in 2220864.

squads-mpl/src/state/ms.rs RUST

#[derive(Accounts)]
#[instruction(threshold: u16, create_key: Pubkey, members:

Vec<Pubkey>)]↪→

pub struct Create<'info> {

© 2022 OtterSec LLC. All Rights Reserved. 9 / 19

Squads Audit 05 | General Findings

#[account(
init,
payer = creator,
space = Ms::SIZE_WITHOUT_MEMBERS + (members.len() * 32),

© 2022 OtterSec LLC. All Rights Reserved. 10 / 19

Squads Audit 05 | General Findings

OS-SQD-SUG-01 [resolved] | Enforce Signed Multisig Program

Description

Whencalling instructions insidea transactioncreatedwithanauthority_indexequal to0, themultisig
PDA account is sent as a signed account. This is designed to be used for calling internal instructions like
adding or removing multisig members.

However, for these transactions, theprogram IDof the instructions is not checked. This leads toapossibility
where you could drain the lamports out of the multisig account itself, causing it to become no-longer rent
exempt.

Remediation

Add a constraint to the ExecuteTransaction instruction that ensures that program_id == id()
if transaction.authority_index = 0.

Patch

Added program_id constraint, resolved in aa62d18 and d200f3d.

squads-mpl/src/state/lib.rs RUST

// make sure internal transactions have a matching program id for
attached instructions↪→

if tx.authority_index == 0 && &incoming_instruction.program_id !=
ctx.program_id {↪→

return err!(MsError::InvalidAuthorityIndex);
}

© 2022 OtterSec LLC. All Rights Reserved. 11 / 19

Squads Audit 05 | General Findings

OS-SQD-SUG-02 [resolved] | General Refactoring and Code Duplication

Description

Some code refactoring can bemade to improve readability and remove unnecessary code.

1. In the below examples, the commented out code can be replaced with the uncommented code.

squads-mpl/src/lib.rs RUST

// let max_ix_index = ctx.accounts.transaction.instruction_index
+ 1;↪→

// (1..max_ix_index)
(1..=ctx.accounts.transaction.instruction_index)

squads-mpl/src/lib.rs RUST

// if !(1..=total_members).contains(&usize::from(threshold)) {
if (threshold < 1 || threshold > total_members) {

squads-mpl/src/lib.rs RUST

// let acc = &ctx.remaining_accounts[index].clone();
// acc.clone()
&ctx.remaining_accounts[index].clone()

2. Refactor theadd_member_and_change_threshold function touse thechange_threshold
function instead of duplicating the code.

3. The structs ApproveTransaction and RejectTransaction use the exact same fields with
the exact same constraints. This redundant code can be eliminated by using a single struct for both
the instructions.

4. Refactor *_index fields in state accounts that use u16/u32 to u64 to avoid any risk of overflows.

5. Refactorexecute_transaction to useexecute_instruction. Also reverify theexecute
flag on the instruction prior to executing the individual instruction an a transaction to be safe.

6. Consider having unique string seed prefixes to avoid any risk of collision between program-
manager and squads-mpl

Remediation

Refactor the code as suggested.

© 2022 OtterSec LLC. All Rights Reserved. 12 / 19

Squads Audit 05 | General Findings

Patch

Resolved in 850858c and 91ce590.

© 2022 OtterSec LLC. All Rights Reserved. 13 / 19

Squads Audit 05 | General Findings

OS-SQD-SUG-03 [resolved] | Potential Unnecessary Call to Transfer

Description

In the AddMember instruction, a call to system_instruction::transfer is made to transfer lam-
ports from themember account to the multisig account to allocate space for the extra slots required.

This call should be avoided if top_up_lamports is zero.

Remediation

Add a constraint that checks to ensure that top_up_lamports > 0 before invoking the transfer in-
struction.

Patch

Resolved in e7108e1.

squads-mpl/src/lib.rs RUST

if top_up_lamports > 0 {
invoke(

&transfer(ctx.accounts.member.key,
&ctx.accounts.multisig.key(), top_up_lamports),↪→

&[
ctx.accounts.member.to_account_info().clone(),
multisig_account_info.clone(),
ctx.accounts.system_program.to_account_info().clone(),

],
)?;

}

© 2022 OtterSec LLC. All Rights Reserved. 14 / 19

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

program-manager
Cargo.toml 48666c1bbb0cdeafb4a0c25cbe5f5db7
Xargo.toml 815f2dfb6197712a703a8e1f75b03c69
src
lib.rs 6f6202a1d0f4a9c14485211412693213
state

mod.rs 3064490501d53ed56365776b74b4c723
pm.rs 7793e10ef2606022677dae3af3db9826

squads-mpl
Cargo.toml a5e1d782f5af65155af6b1d1bab40dc1
README.md dd5f911956eebeb7fc9b66d0c4c0ad8d
Xargo.toml 815f2dfb6197712a703a8e1f75b03c69
src
errors.rs 54fb8b785b7ddb83652cb384ad54d58d
lib.rs 8aad0b5dd6c6fb338635707927cdeba0
state

mod.rs 8e28aa325e72c37057eff39700b750dd
ms.rs d7934d74a2e3013ecc7c65a22305abfa

© 2022 OtterSec LLC. All Rights Reserved. 15 / 19

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix C.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 16 / 19

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 17 / 19

Squads Audit C | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 18 / 19

D | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 19 / 19

