
Composable Bridge
Security Assessment

August 12th, 2024 — Prepared by OtterSec

Akash Gurugunti sud0u53r.ak@osec.io

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:d1r3wolf@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 3

Overview 3

Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6

OS-CBG-ADV-00 | Unauthorized Withdrawals Of Staked Tokens 8

OS-CBG-ADV-01 | Account Inconsistencies In Bridge Tokens Instruction 9

OS-CBG-ADV-02 | Unbacked Deposits In Stake Pool 11

OS-CBG-ADV-03 | Absence Of Bank Account Validation 12

OS-CBG-ADV-04 | Unverified Marginfi Account Indices 13

OS-CBG-ADV-05 | Missing Rewards Withdrawal Functionality 15

OS-CBG-ADV-06 | Failure To Burn Receipt Tokens 16

OS-CBG-ADV-07 | Absence Of Rollup Status Check 17

OS-CBG-ADV-08 | Incorrect Space Calculation 18

General Findings 19

OS-CBG-SUG-00 | Token Amount Mismatch 20

OS-CBG-SUG-01 | Inconsistencies In Deposit Instruction 22

OS-CBG-SUG-02 | Removal Of Unused And Redundant Code 24

OS-CBG-SUG-03 | Missing Validation Logic 26

OS-CBG-SUG-04 | Code Refactoring 28

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 30

Composable Bridge Audit

TABLE OF CONTENTS

Appendices

Vulnerability Rating Scale 29

Procedure 30

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 30

01 — Executive Summary

Overview

Composable Finance engaged OtterSec to assess the bridge-contractbridge-contract program. This assessment was

conducted between July 21st and August 8th, 2024. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 14 findings throughout this audit engagement.

In particular, we identified several critical vulnerabilities, including the lack of checks to ensure that the

staker has the authority to withdraw the specified amount, potentially allowing unauthorized withdrawals

of all staked tokens (OS-CBG-ADV-00), and the missing validation for the token mint in the token bridging

instruction, enabling transfers from any escrow account rather than verifying that the token mint matches

the designated receipt token (OS-CBG-ADV-03). We also highlighted multiple high-risk issue, concerning

the absence of validation of the bank account to verify if it matches the whitelisted bank addresses,

allowing potential misuse by unauthorized banks (OS-CBG-ADV-03), and a missing check against the

index of the Marginfi account in the deposit and withdraw instructions, enabling users to use a newly

created Marginfi account with already existing mints (OS-CBG-ADV-04).

Furthermore, the rewards collection instruction deposits rewards into the rewards token account, with

no mechanism to withdraw or manage these deposited rewards, essentially locking these funds (OS-

CBG-ADV-05). Additionally, there is a mismatch in the deposit process, between the number of tokens

deposited into the stake pool and the amount transferred from the staker’s token account to the escrow

token account (OS-CBG-SUG-00).

We also made recommendations for the removal of redundant and unutilized code for better maintainability

and clarity (OS-CBG-SUG-02) and advised the implementation of proper validation (OS-CBG-SUG-03).

We further suggested modifying the codebase for improved efficiency and mitigating potential security

issues (OS-CBG-SUG-04).

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 30

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/ComposableFi/bridge-

contract. This audit was performed against commit d5534ec.

A brief description of the programs is as follows:A brief description of the programs is as follows:

NameName DescriptionDescription

bridge-contract

The bridge program facilitates the transfer of assets between different

blockchains. It integrates with external platforms for yield generation and

restaking, allowing users to deposit, withdraw, and earn rewards on their

assets. The programmanages token whitelisting, MarginFi account creation,

and administrative controls.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 30

https://github.com/ComposableFi/bridge-contract
https://github.com/ComposableFi/bridge-contract
https://github.com/ComposableFi/bridge-contract/commit/d5534ece79fc8c9dcf716b676dd99f0f7220780b

03 — Findings

Overall, we reported 14 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 3

HIGHHIGH 3

MEDIUMMEDIUM 1

LOWLOW 2

INFOINFO 5

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 30

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-CBG-ADV-00
CRITICALCRITICAL RESOLVEDRESOLVED

The withdrawwithdraw instruction lacks checks to

ensure that the staker has the authority to with-

draw the specified amount, potentially allowing

unauthorized withdrawals of all staked tokens.

OS-CBG-ADV-01
CRITICALCRITICAL RESOLVEDRESOLVED

BridgeTokensBridgeTokens instruction lacks validation

for token_minttoken_mint , which allows transfers from
any escrow account rather than verifying that

token_minttoken_mint matches the designated receipt

token, and the stakerstaker account is not marked

as SignerSigner .

OS-CBG-ADV-02
CRITICALCRITICAL RESOLVEDRESOLVED

In the depositdeposit instruction a staker may

add an unbacked amount to their deposit when

deposit_soldeposit_sol is false, as no tokens or lam-

ports are actually transferred from the staker’s

account during the deposit process even though

their DepositStateDepositState is updated.

OS-CBG-ADV-03
HIGHHIGH RESOLVEDRESOLVED

depositdeposit , withdrawwithdraw , and collectRewardscollectRewards
instructions fail to validate that the bankbank
account matches the bankbank address

in common_state.whitelisted_tokenscommon_state.whitelisted_tokens ,

which allows for potential misuse by passing

unintended banksbanks .

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 30

Composable Bridge Audit 04 — Vulnerabilities

OS-CBG-ADV-04
HIGHHIGH RESOLVEDRESOLVED

depositdeposit and withdrawwithdraw do not verify that the

marginfi_account_idxmarginfi_account_idx is within the bounds

of common_state.marginfi_accountscommon_state.marginfi_accounts , po-
tentially allowing the utilization of new Marginfi

accounts with existing mints.

OS-CBG-ADV-05
HIGHHIGH RESOLVEDRESOLVED

collect_rewardscollect_rewards instruction deposits re-

wards into the rewards_token_accountrewards_token_account ,

but there is no mechanism to withdraw or man-

age these deposited rewards, essentially locking

them in.

OS-CBG-ADV-06
MEDIUMMEDIUM RESOLVEDRESOLVED

The withdrawwithdraw instruction does not burn the re-
ceipt tokens withdrawn from the restaking pro-

gram, which are meant to represent locked to-

kens in Marginfi, resulting in the accumulation

of unburned receipt tokens.

OS-CBG-ADV-07
LOWLOW RESOLVEDRESOLVED

bridge_tokensbridge_tokens will not execute as intended if

common_state.is_rollup_activecommon_state.is_rollup_active is false.

OS-CBG-ADV-08
LOWLOW RESOLVEDRESOLVED

The space calculation for CommonStateCommonState
in UpdateTokenWhitelistUpdateTokenWhitelist and

CreateMarginfiAccountCreateMarginfiAccount is inaccurate

because it omits the 4-byte prefix required for

storing vector lengths.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 30

Composable Bridge Audit 04 — Vulnerabilities

UnauthorizedWithdrawals Of Staked Tokens CRITICALCRITICAL OS-CBG-ADV-00

Description

The current implementation of the withdrawwithdraw instruction does not verify if the amount being withdrawn

is valid or authorized for the staker. As a result, a staker may withdraw an amount of tokens that exceeds

their actual balance or claim tokens that belong to other stakers. Since there is no check to ensure that

the withdrawn amount is within the staker’s deposited balance, any staker may withdraw tokens staked by

other users. This will result in significant security risks, including the unauthorized transfer of tokens and

potential financial losses for other users.

>_ instructions/withdraw.rs rust

pub fn withdraw<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Withdraw<'info>>,
amount: u64,

) -> Result<()> {
let common_state = &mut ctx.accounts.common_state;
let bump = common_state.bump;
let seeds = [COMMON_SEED, core::slice::from_ref(&bump)];
let seeds = seeds.as_ref();
let signer_seeds = core::slice::from_ref(&seeds);
[...]

}

Additionally, after the withdrawal, there is no mechanism in place to update or delete the staker’s deposit

record in the depositsdeposits state account. This implies that even after tokens are withdrawn, the state

account may still reflect an outdated or incorrect balance.

Remediation

Ensure that the amount of tokens that need to be withdrawn are either in the staker’s depositdeposit state

account or have been bridged back onto this chain by the staker to ensure the staker has authority over

those tokens. Additionally, the deposit in the depositsdeposits state account should be deleted after the

withdrawal.

Patch

Resolved in d5534ec.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 30

https://github.com/ComposableFi/bridge-contract/commit/d5534ece79fc8c9dcf716b676dd99f0f7220780b

Composable Bridge Audit 04 — Vulnerabilities

Account Inconsistencies In Bridge Tokens Instruction CRITICALCRITICAL OS-CBG-ADV-01

Description

In the bridge_tokensbridge_tokens instruction, the token_minttoken_mint is utilized to determine the type of token being

transferred. However, the current implementation does not verify if token_minttoken_mint is the correct mint

address associated with the receipt token at the time of deposit. This lack of validation allows users to

potentially transfer tokens from any escrow account, not just the intended one.

>_ instructions/bridgetokens.rs rust

pub fn bridge_tokens<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, BridgeTokens<'info>>,
deposit_index: u8,

) -> Result<()> {
[...]
let hashed_full_denom =

lib::hash::CryptoHash::digest(ctx.accounts.token_mint.key().to_string().as_ref());
let denom = ibc::apps::transfer::types::PrefixedDenom::from_str(

&ctx.accounts.token_mint.key().to_string(),
)
.unwrap();
let token = ibc::apps::transfer::types::Coin {

denom,
amount: deposit.amount.into(),

};
[...]

}

Additionally, the stakerstaker account in the BridgeTokensBridgeTokens instruction is not explicitly marked as a

SignerSigner . Solana-IBC requires that the stakerstaker account must be a SignerSigner to authorize the transfer of

tokens. If the stakerstaker is not a SignerSigner , the transaction will not be validated correctly. Furthermore,

user_receipt_escrow_accountuser_receipt_escrow_account is initialized with the fee_payerfee_payer as its authority. However, it is more

appropriate for the stakerstaker to be designated as the authority for this account.

Remediation

Store the restake_receipt_token_mintrestake_receipt_token_mint in DepositDeposit and validate the token_minttoken_mint against it. This

ensures that each deposit record has a reference to the correct token mint that should be utilized. Also, de-

clare the stakerstaker account as a SignerSigner andmodify the initialization of user_receipt_escrow_accountuser_receipt_escrow_account

so that the stakerstaker is set as the authority rather than the fee_payerfee_payer .

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 30

Composable Bridge Audit 04 — Vulnerabilities

Patch

Resolved in 337399d.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 30

https://github.com/ComposableFi/bridge-contract/pull/4/commits/337399d03c13fab2b1de9a7df594ae071973fc61

Composable Bridge Audit 04 — Vulnerabilities

Unbacked Deposits In Stake Pool CRITICALCRITICAL OS-CBG-ADV-02

Description

The vulnerability in the depositdeposit instruction occurs when the deposit_soldeposit_sol flag is false. When

deposit_soldeposit_sol is false, the code does not execute any logic to transfer tokens from the staker’s account

to the stake pool. Despite the lack of a token or lamport transfer, the code still adds the amount to the

staker’s DepositStateDepositState . By incrementing DepositStateDepositState , the contract records a deposit, even though
no actual tokens or lamports were transferred from the staker.

>_ instructions/deposit.rs rust

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
amount: u64,
deposit_sol: bool,

) -> Result<()> {
[...]
if deposit_sol {

if ctx.remaining_accounts.len() != LIQUID_STAKE_ACCOUNTS_LEN as usize {
return Err(ErrorCode::InsufficientAccounts.into());

}

if ctx.remaining_accounts[5].key != &common_state.lst_delegation_mint {
return Err(ErrorCode::InvalidMint.into());

}
[...]

}
[...]

}

Since the amount is added to the DepositStateDepositState without any corresponding transfer of assets, a

staker may potentially inflate their deposit balance, triggering the depositdeposit instruction repeatedly with

deposit_soldeposit_sol set to false, artificially increasing their stake in the system. Consequently, the staker may

withdraw more than what they initially deposited, resulting in a loss of funds for the stake pool.

Remediation

Ensure that any amount added to the DepositStateDepositState corresponds to an actual transfer of tokens or

lamports from the user’s account to the stake pool, preventing unbacked deposits.

Patch

Resolved in 435887a.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 30

https://github.com/ComposableFi/bridge-contract/pull/4/commits/435887a3304f1e4099c2d5f0f1ed41f2d2a63fbe

Composable Bridge Audit 04 — Vulnerabilities

Absence Of Bank Account Validation HIGHHIGH OS-CBG-ADV-03

Description

There is a lack of validation for the bankbank account against the whitelisted_tokenswhitelisted_tokens field in

common_statecommon_state in the depositdeposit , withdrawwithdraw , and collectRewardscollectRewards instructions. Consequently, any

malicious actor may utilize a different bankbank account that was not intended. Thus, rewards or deposits

will be sent to this bankbank account, which might be different from the intended one

>_ instructions/deposit.rs rust

#[derive(Accounts)]
pub struct Deposit<'info> {

#[account(mut)]
pub staker: Signer<'info>,
#[account(mut, seeds = [COMMON_SEED], bump = common_state.bump)]
pub common_state: Box<Account<'info, CommonState>>,
pub token_mint: Box<Account<'info, Mint>>,
[...]
pub bank: UncheckedAccount<'info>,
[...]

}

Remediation

Validate that the bankbank account is listed in common_state.whitelisted_tokenscommon_state.whitelisted_tokens in the depositdeposit ,

withdrawwithdraw , and collectRewardscollectRewards instructions.

Patch

Resolved in bd8c15c.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 30

https://github.com/ComposableFi/bridge-contract/commit/bd8c15c2edd6ddb64f4753b45907571b093d4fab

Composable Bridge Audit 04 — Vulnerabilities

Unverified Marginfi Account Indices HIGHHIGH OS-CBG-ADV-04

Description

In the depositdeposit and withdrawwithdraw instructions, the marginfi_account_idxmarginfi_account_idx is not validated against the

index of the marginfi_accountmarginfi_account within the common_state.marginfi_accountscommon_state.marginfi_accounts . The

marginfi_account_idxmarginfi_account_idx is supposed to map a mintmint to a specific MarginFi account in the

common_state.marginfi_accountscommon_state.marginfi_accounts list. This mapping helps determine which MarginFi account han-

dles operations related to the given mintmint . As a result, this oversight allows users to utilize a newly created
Marginfi account with already existing mints. This misalignment will result in the incorrect allocation of

funds.

>_ instructions/deposit.rs rust

#[derive(Accounts)]
pub struct Deposit<'info> {

#[account(mut)]
pub staker: Signer<'info>,
#[account(mut, seeds = [COMMON_SEED], bump = common_state.bump)]
pub common_state: Box<Account<'info, CommonState>>,
pub token_mint: Box<Account<'info, Mint>>,
[...]
// Marginfi accounts
#[account(mut, constraint = common_state.marginfi_accounts.contains(marginfi_account.key))]
/// CHECK: Address is checked above
pub marginfi_account: UncheckedAccount<'info>,
[...]

}

Additionally, when adding the check for marginfi_account_idxmarginfi_account_idx , it is also necessary to ensure that the
length of the whitelisted_token_mintswhitelisted_token_mints input parameter in the initializeinitialize instruction is less than

or equal to 16. This is because if the length exceeds 16, some tokens may be incorrectly assigned to a

Marginfi account that will not be able handle them due to capacity constraints.

Remediation

Ensure that marginfi_account_idxmarginfi_account_idx utilized in the DepositDeposit and WithdrawWithdraw instructions corresponds

to an account listed in common_state.marginfi_accountscommon_state.marginfi_accounts , and in the initializeinitialize instruction, add

validation to ensure that the length of whitelisted_token_mintswhitelisted_token_mints is ≤ 16≤ 16 , aligning with the capacity
of Marginfi accounts.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 30

Composable Bridge Audit 04 — Vulnerabilities

Patch

Resolved in 0227380.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 30

https://github.com/ComposableFi/bridge-contract/commit/02273807e70125622050ee1fb047d6b53f325805

Composable Bridge Audit 04 — Vulnerabilities

Missing RewardsWithdrawal Functionality HIGHHIGH OS-CBG-ADV-05

Description

The collect_rewardscollect_rewards instruction only handles the process of collecting rewards from a MarginFi

lending account and depositing them into the rewards_token_accountrewards_token_account . There is no accompanying
functionality to withdraw or manage these rewards once they are deposited. This implies that after

the rewards are collected, they remain in the rewards_token_accountrewards_token_account without a defined way to be

withdrawn or utilized. This will result in a buildup of rewards that are effectively locked in the account.

Remediation

Implement functionality that allows the withdrawal or transfer of the rewards from the

rewards_token_accountrewards_token_account .

Patch

Fixed in PR#8.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 30

https://github.com/ComposableFi/bridge-contract/pull/8

Composable Bridge Audit 04 — Vulnerabilities

Failure To Burn Receipt Tokens MEDIUMMEDIUM OS-CBG-ADV-06

Description

In the withdrawwithdraw instruction, tokens are withdrawn from the restaking program and deposited into

the restake_receipt_token_accountrestake_receipt_token_account . These tokens are supposed to represent the user’s stake or
deposit in the restaking program. After the tokens are withdrawn from the restaking program, the code

does not include a step to burn or destroy these receipt tokens. Burning these tokens is relevant because

they should be invalidated once they are redeemed or unlocked from the restaking program.

>_ instructions/withdraw.rs rust

pub fn withdraw<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Withdraw<'info>>,
amount: u64,

) -> Result<()> {
[...]
let accounts = restaking_v2_interface::instructions::WithdrawAccounts {

staker: &common_state.to_account_info(),
common_state: &ctx.accounts.restake_common_state.to_account_info(),
token_mint: &ctx.accounts.restake_token_mint.to_account_info(),
staker_token_account: &ctx.accounts.restake_receipt_token_account.to_account_info(),
escrow_token_account: &ctx.accounts.restake_escrow_token_account.to_account_info(),
receipt_token_mint: &ctx.accounts.restake_receipt_token_mint.to_account_info(),
staker_receipt_token_account: &ctx

.accounts

.restake_staker_receipt_token_account

.to_account_info(),
token_program: &ctx.accounts.token_program,
[...]

};
[...]

}

Remediation

Ensure that the receipt tokens in restake_receipt_token_accountrestake_receipt_token_account are burned after withdrawing

tokens from the restaking program and before interacting with the MarginFi program.

Patch

Resolved in f49a0ad.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 30

https://github.com/ComposableFi/bridge-contract/commit/f49a0adcb4bee8a833ff5b9d7eb17cdaf4fbd456

Composable Bridge Audit 04 — Vulnerabilities

Absence Of Rollup Status Check LOWLOW OS-CBG-ADV-07

Description

In the current implementation of the bridge_tokensbridge_tokens instruction, there is no check to verify that the

program is operating in an active rollup mode. If bridge_tokensbridge_tokens is executed without checking if the

rollup is active, it may result in unexpected errors, and the transaction would fail since, until the rollup is

active, the receipt tokens will be stored in the contract, and they may be transferred only once the rollup is

active.

Remediation

Add a check to verify that the rollup is active before proceeding with bridging tokens.

Patch

Resolved in ce06685.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 30

https://github.com/ComposableFi/bridge-contract/commit/ce066850baa92cbe89d72fa355490f443ade414f

Composable Bridge Audit 04 — Vulnerabilities

Incorrect Space Calculation LOWLOW OS-CBG-ADV-08

Description

The calculation of required_spacerequired_space in the UpdateTokenWhitelistUpdateTokenWhitelist and CreateMarginfiAccountCreateMarginfiAccount
instructions is currently incorrect. It is critical to ensure that the common_statecommon_state account has sufficient

space to store all its data. When storing a vector (whitelisted_tokenswhitelisted_tokens or marginfi_accountsmarginfi_accounts),
Solana’s data structures require an additional four bytes to store the length of the vector. This is omitted

in the space calculation of required_spacerequired_space , resulting in an underestimation of the required space for
storing data about MarginFi accounts and whitelisted tokens. The anchor program structs also require 8

bytes for discriminator at the start of the storage slot. This should also be included in the storage space

calculation.

rust

let required_space = (MintWithBank::INIT_SPACE * (common_state.whitelisted_tokens.len()))
+ 32
+ 32
+ 32
+ (32 * (common_state.marginfi_accounts.len() + 1))
+ 32
+ 1 // since Pubkey has fixed size, an extra byte is used by `option`
+ 1;

Remediation

Include the 4-byte prefix that stores the length of the vector and the 8-bytes for the discriminator in the

calculation of

required_spacerequired_space . Additionally, move the required_spacerequired_space calculation to a functionwithin CommonStateCommonState
to reduce redundancy.

Patch

Resolved in 0e8d9cc.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 30

https://github.com/ComposableFi/bridge-contract/commit/0e8d9cccd7a80d694d3decd241327c7c58ffc1a7

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-CBG-SUG-00

The deposit process may result in a mismatch between the number of tokens

deposited into the stake pool and the amount transferred from the staker’s

token account to the escrow token account.

OS-CBG-SUG-01

deposit_soldeposit_sol in the depositdeposit instructions may fail on stake pools that

require a sol_deposit_authoritysol_deposit_authority because it is passed as NoneNone .

OS-CBG-SUG-02
The codebase contains multiple cases of redundant and unutilized which

should be removed for better maintainability and clarity.

OS-CBG-SUG-03
There are several instances where proper validation is not done, resulting

in potential security issues.

OS-CBG-SUG-04
Recommendations for modifying the codebase to improve efficiency and

mitigate potential security issues.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 30

Composable Bridge Audit 05 — General Findings

Token Amount Mismatch OS-CBG-SUG-00

Description

In the depositdeposit instruction, the deposit_soldeposit_sol operation deposits SOLSOL into a stake pool and receives

a certain amount of stake pool tokens in return. These tokens are received in an account with the mint

common_state.lst_delegation_mintcommon_state.lst_delegation_mint , not necessarily the same as the staker’s token account. After
the SOLSOL deposit, the function transfers an amount of tokens from the staker’s token account to the

escrow token account. The amount transferred is based on the updated balance of the token account

after the SOLSOL deposit.

>_ instructions/deposit.rs rust

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
amount: u64,
deposit_sol: bool,

) -> Result<()> {
[...]
if deposit_sol {

if ctx.remaining_accounts.len() != LIQUID_STAKE_ACCOUNTS_LEN as usize {
return Err(ErrorCode::InsufficientAccounts.into());

}

if ctx.remaining_accounts[5].key != &common_state.lst_delegation_mint {
return Err(ErrorCode::InvalidMint.into());

}
[...]

}

let transfer_ix = Transfer {
from: ctx.accounts.staker_token_account.to_account_info(),
to: ctx.accounts.escrow_token_account.to_account_info(),
authority: ctx.accounts.staker.to_account_info(),

};

let cpi_ctx = CpiContext::new(ctx.accounts.token_program.to_account_info(), transfer_ix);
[...]

}

However, the function does not ensure that the token account receiving the tokens (lst_token_acclst_token_acc) is
the same as the staker’s token account (staker_token_accountstaker_token_account). It also does not check that the token
mint (lst_delegation_mintlst_delegation_mint) for the received tokens is the same as the token mint (token_minttoken_mint)
utilized for the staker’s token account. Consequently, the number of tokens transferred may not align with

what was actually deposited into the stake pool.

© 2024 Otter Audits LLC. All Rights Reserved. 20 / 30

Composable Bridge Audit 05 — General Findings

Remediation

Add checks to ensure that lst_token_acclst_token_acc matches staker_token_accountstaker_token_account to confirm that tokens

are deposited and received as expected. Also, verify that the token mint of the tokens received

(lst_delegation_mintlst_delegation_mint) is the same as the token mint of the staker’s token account (token_minttoken_mint).

© 2024 Otter Audits LLC. All Rights Reserved. 21 / 30

Composable Bridge Audit 05 — General Findings

Inconsistencies In Deposit Instruction OS-CBG-SUG-01

Description

In the depositdeposit instruction, the if deposit_solif deposit_sol block interacts with the stake pool program to handle

SOLSOL deposits. In the stake pool program, sol_deposit_authoritysol_deposit_authority is an optional authority required

for depositing SOLSOL into the stake pool. Some stake pools are configured to require this authority for

processing SOLSOL deposits. deposit_soldeposit_sol passes sol_deposit_authoritysol_deposit_authority as NoneNone . If the stake

pool being interacted with requires a sol_deposit_authoritysol_deposit_authority , this absence will result in the deposit
failing.

>_ instructions/deposit.rs rust

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
amount: u64,
deposit_sol: bool,

) -> Result<()> {
[...]
if deposit_sol {

let accounts = vec![
[...]
token_acc.clone(),
ctx.remaining_accounts[4].to_account_info(),
token_acc.clone(), // Same account as receiver token account
ctx.remaining_accounts[5].to_account_info(),
ctx.accounts.system_program.to_account_info(),
ctx.accounts.token_program.to_account_info(),
ctx.remaining_accounts[6].to_account_info(),

];
[...]

}
[...]

}

Stake pools that require sol_deposit_authoritysol_deposit_authority have specific permissions and controls around who

may deposit SOLSOL . Passing NoneNone implies that no authority is provided, which is incompatible with stake

pools expecting authority. When sol_deposit_authoritysol_deposit_authority is expected but not provided, the instruction

will not be processed, resulting in a failed deposit operation, preventing the deposit of SOLSOL into the pool.

Furthermore, the accounts vector includes ctx.remaining_accounts[6]ctx.remaining_accounts[6] , which is passed to
invoke_signedinvoke_signed for executing the depositdeposit instruction. Since sol_deposit_authoritysol_deposit_authority is passed

as NoneNone in deposit_soldeposit_sol , the presence of ctx.remaining_accounts[6]ctx.remaining_accounts[6] in the accounts vector is

redundant. This account is not utilized in the actual deposit operation and is not necessary for executing

the instruction.

© 2024 Otter Audits LLC. All Rights Reserved. 22 / 30

Composable Bridge Audit 05 — General Findings

Remediation

Determine if the stake pool requires sol_deposit_authoritysol_deposit_authority . If it does, pass the appropriate authority
to deposit_soldeposit_sol . Also, ensure that only the necessary accounts are included in the accountsaccounts vector

for the depositdeposit instruction.

Patch

Resolved in 0227380.

© 2024 Otter Audits LLC. All Rights Reserved. 23 / 30

https://github.com/ComposableFi/bridge-contract/commit/02273807e70125622050ee1fb047d6b53f325805

Composable Bridge Audit 05 — General Findings

Removal Of Unused And Redundant Code OS-CBG-SUG-02

Description

1. In the withdrawwithdraw instruction, after creating the instruction and generating the account_infosaccount_infos
list, the code pushes the bankbank account and oracle_keyoracle_key account again into ix.accountsix.accounts .

Since the bankbank account is already included in accounts.into()accounts.into() , adding it again will result in
duplication in the list of accounts, and thus this operation should be removed.

2. Prior to the initialization of whitelisted_tokenswhitelisted_tokens , check for duplicates to prevent the addition of
similar tokens to the list. Similarly, perform this check while updating the list. Searching for a specific

token in a list with duplicates will result in unintended issues and data inconsistencies.

3. In the updates_stateupdates_state instruction, the initialization of marginfi_acc_idxmarginfi_acc_idx with

current_whitelisted_tokens_len / MAXIMUM_LENDING_ACC_BALANCEScurrent_whitelisted_tokens_len / MAXIMUM_LENDING_ACC_BALANCES should be removed

as it is unnecessary because it is overwritten in the subsequent loop.

>_ instructions/update_state.rs rust

pub fn update_token_whitelist(
ctx: Context<UpdateState>,
new_tokens: Vec<MintWithBankPayload>,

) -> Result<()> {
[...]
let mut marginfi_acc_idx =

current_whitelisted_tokens_len / MAXIMUM_LENDING_ACC_BALANCES as usize;
[...]
let token_mints_with_idx = new_tokens

.iter()

.enumerate()

.map(|(index, mint)| {
marginfi_acc_idx =

(current_whitelisted_tokens_len + index) / MAXIMUM_LENDING_ACC_BALANCES as
usize;↪→

MintWithBank {
mint: mint.mint,
bank: mint.bank,
marginfi_account_idx: marginfi_acc_idx as u8,

}
})
.collect::<Vec<MintWithBank>>();

[...]
}

4. In depositdeposit instruction, spl_stake_pool::instruction::deposit_solspl_stake_pool::instruction::deposit_sol CPICPI requires only the

lamports_from_accountlamports_from_account (which is the staker in this case) as a signer. The code unnecessarily

includes the common_statecommon_state account as a signer in the CPICPI call, which should be removed.

© 2024 Otter Audits LLC. All Rights Reserved. 24 / 30

Composable Bridge Audit 05 — General Findings

Remediation

Remove the redundant and unutilized code.

Patch

1. Issue #2 resolved in ac248d9.

2. Issue #3 resolved in 9685968.

3. Issue #4 resolved in aa3765f.

© 2024 Otter Audits LLC. All Rights Reserved. 25 / 30

https://github.com/otter-sec/ComposableFi--bridge-contract/commit/ac248d9dfa95b6a587be88f64a50ffb3a37c8bb7
https://github.com/otter-sec/ComposableFi--bridge-contract/commit/9685968c3b9be441d018ee2b1b5b9a2e35a91013
https://github.com/otter-sec/ComposableFi--bridge-contract/commit/aa3765ff4d7bec81fcda00c8c9435ba22f4538f5

Composable Bridge Audit 05 — General Findings

Missing Validation Logic OS-CBG-SUG-03

Description

1. collect_rewardcollect_reward utilizes token_minttoken_mint to initialize the rewards_token_accountrewards_token_account instead of

emission_mintemission_mint . The MarginFi program expects the rewards to be transferred to a token account

associated with the emission_mintemission_mint . utilizing a different mint for the rewards_token_accountrewards_token_account
would violate this expectation and result in the CPICPI call failing.

>_ instructions/update_state.rs rust

pub fn collect_rewards(ctx: Context<CollectRewards>) -> Result<()> {
[...]
let accounts =

marginfi_interface::instructions::LendingAccountWithdrawEmissionsAccounts {↪→

marginfi_group: &ctx.accounts.marginfi_group.to_account_info(),
marginfi_account: &ctx.accounts.marginfi_account.to_account_info(),
signer: &ctx.accounts.common_state.to_account_info(),
bank: &ctx.accounts.bank.to_account_info(),
emissions_mint: &ctx.accounts.emissions_mint.to_account_info(),
emissions_auth: &ctx.accounts.emissions_auth.to_account_info(),
emissions_vault: &ctx.accounts.emissions_vault.to_account_info(),
destination_account: &ctx.accounts.rewards_token_account.to_account_info(),
token_program: &ctx.accounts.token_program.to_account_info(),

};
[...]

}

2. update_token_whitelistupdate_token_whitelist and create_marginfi_accountcreate_marginfi_account unconditionally transfer the dif-

ference between the new and old rent requirements to the common_statecommon_state account. This may result

in transferring more lamports than necessary, especially if the account already holds more lamports

than the calculated minimum balance, resulting in a waste of funds.

3. In the withdrawwithdraw instruction, it should be verified that the token_minttoken_mint associated with the with-

drawal request is whitelisted before proceeding with the withdrawal process, to prevent unauthorized

token transfers.

Remediation

1. Utilize emission_mintemission_mint instead of token_minttoken_mint in rewards_token_accountrewards_token_account checks.

2. Compare the required lamports with the existing lamports in the common_statecommon_state account. Only the

difference between the two amounts should be transferred.

3. Implement a check to verify if the token_minttoken_mint is present in the whitelisted_tokenswhitelisted_tokens array.

© 2024 Otter Audits LLC. All Rights Reserved. 26 / 30

Composable Bridge Audit 05 — General Findings

Patch

1. Issue #1 resolved in 26add09.

© 2024 Otter Audits LLC. All Rights Reserved. 27 / 30

https://github.com/otter-sec/ComposableFi--bridge-contract/commit/26add09639cf0987156d605c32ad9193e6b1fe93

Composable Bridge Audit 05 — General Findings

Code Refactoring OS-CBG-SUG-04

1. Utilize concatenated_token_list.lenconcatenated_token_list.len instead of recalculating the length multiple times in

update_token_whitelistupdate_token_whitelist .

2. In the current design of update_token_whitelistupdate_token_whitelist , deleting whitelisted tokens is not permitted.
Thus, implementing a pause flag that allows tokens to be temporarily deactivated without removing

them from the whitelist may be beneficial. This will allow for safer management of tokens in various

scenarios, such as security or operational issues.

3. The constant is set to six currently, whereas only five accounts are utilized. It would be appropriate

to update the constant accordingly.

4. The DepositDeposit instruction may be optimized for improved redability by utilizing OptionOption accounts

for deposit_statedeposit_state and restake_user_receipt_token_accountrestake_user_receipt_token_account instead of implementing

custom checks and parsing functionality.

Remediation

Modify the code as mentioned above.

© 2024 Otter Audits LLC. All Rights Reserved. 28 / 30

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 29 / 30

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that the others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 30 / 30

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-CBG-ADV-00 | Unauthorized Withdrawals Of Staked Tokens
	[8.75em][l]OS-CBG-ADV-01 | Account Inconsistencies In Bridge Tokens Instruction
	[8.75em][l]OS-CBG-ADV-02 | Unbacked Deposits In Stake Pool
	[8.75em][l]OS-CBG-ADV-03 | Absence Of Bank Account Validation
	[8.75em][l]OS-CBG-ADV-04 | Unverified Marginfi Account Indices
	[8.75em][l]OS-CBG-ADV-05 | Missing Rewards Withdrawal Functionality
	[8.75em][l]OS-CBG-ADV-06 | Failure To Burn Receipt Tokens
	[8.75em][l]OS-CBG-ADV-07 | Absence Of Rollup Status Check
	[8.75em][l]OS-CBG-ADV-08 | Incorrect Space Calculation

	General Findings
	[8.75em][l]OS-CBG-SUG-00 | Token Amount Mismatch
	[8.75em][l]OS-CBG-SUG-01 | Inconsistencies In Deposit Instruction
	[8.75em][l]OS-CBG-SUG-02 | Removal Of Unused And Redundant Code
	[8.75em][l]OS-CBG-SUG-03 | Missing Validation Logic
	[8.75em][l]OS-CBG-SUG-04 | Code Refactoring

	Appendices
	Vulnerability Rating Scale
	Procedure

