GO otterSec

Security Assessment

February 14th, 2024 — Prepared by OtterSec

Akash Gurugunti sudOu53r.ak@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2
Overview 2
Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5
OS-CFI-ADV-00 | Ability To Initialize Multiple Times 6
0OS-CFI-ADV-01 | Discrepancy In Deposit Functionality 7
OS-CFI-ADV-02 | Missing Receipt Token Balance Check 8
OS-CFI-ADV-03 | Stake Mint Differentiation 9
OS-CFI-ADV-04 | Lack Of Sysvar Account Validation 10
OS-CFI-ADV-05 | Potential Fund Lockup 1

General Findings 12
OS-CFI-SUG-00 | Context Signer Correction 13
0OS-CFI-SUG-01 | Enforce Mandatory Service Assignment 14
OS-CFI-SUG-02 | Missing Constraint 15
OS-CFI-SUG-03 | Code Optimization 16

Appendices

Vulnerability Rating Scale 17

Procedure 18

© 2024 Otter Audits LLC. All Rights Reserved. 1/18

01— Executive Summary

Overview

Composable Finance engaged OtterSec to assess the emulated-light-client program. This
assessment was conducted between January 16th and January 19th, 2024. For more information on our
auditing methodology, refer to Appendix B.

Key Findings
We produced 10 findings throughout this audit engagement.

In particular, we identified a critical vulnerability concerning unauthorized alterations to staking parameters
(OS-CFI-ADV-00) and another issue regarding the lack of account validation in the deposit and staking
functionalities (OS-CFI-ADV-01). Furthermore, we highlighted a potential lockup of funds during withdrawal
due to a lack of compatibility for handling cases where no passing of a value to the optional service
parameter occurs (OS-CFI-ADV-05).

We also made recommendations around optimizing token transfer and burning non-fungible tokens by
introducing a boolean argument or utilizing empty seeds to enable unsigned invocation where signed
invocation is unnecessary (0OS-CFI-SUG-03) and proposed the replacement of a method in the set state
function (OS-CFI-SUG-00). Additionally, we advised the inclusion of certain constraints in the withdraw
instruction for the staking params account (OS-CFI-SUG-02).

© 2024 Otter Audits LLC. All Rights Reserved. 2/18

02 — Scope

The source code was delivered to us in a Git repository at
https://github.com/ComposableFi/emulated-light-client. This audit was performed against commit aaf20a2.

A brief description of the programs is as follows:

Name Description

A program that describes a bridge between Solana and Cosmos utilizing

emulated-light-client inter-blockchain communication.

© 2024 Otter Audits LLC. All Rights Reserved. 3/18

https://github.com/ComposableFi/emulated-light-client
https://github.com/ComposableFi/emulated-light-client/commit/aaf20a214917ba59ad219e575698889f992e6e0f

03 — Findings

Overall, we reported 10 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2024 Otter Audits LLC. All Rights Reserved.

Severity

CRITICAL
HIGH
MEDIUM
LOW
INFO

4/18

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

Initialize utilizes dinit_if_needed , allowing

OS-CFI-ADV-00 CRITICAL RESOLVED ©® -] i
unauthorized alterations to staking parameters.

Lack of account validation for

0S-CFI-ADV-01 CRITICAL RESOLVED ® —-—
rema'ln'lng_accounts

Absence of a check for a non-zero balance in the
0S-CFI-ADV-02 CRITICAL RESOLVED ® depositor's receipt_token_account within

set_service instruction.

Missing parameters in
k ibc::cpi:: k

OS-CFI-ADV-03 HIGH RESOLVED ® Set_,Sta eso,lana,_-l,bc cP1 S?F_St_a ©

function, for identifying the specific mint of the

staked amount.

Lack of validation for the instruction sysvar ac-

count in validate_remaining_accounts and
OS-CFI-ADV-04 HIGH RESOLVED ®

set_stake , potentially allowing unintended or in-

secure usage.

Potential lockup of funds during withdrawal due to
0S-CFI-ADV-05 LOW RESOLVED ® a lack of compatibility with None values for the

optional service parameter.

© 2024 Otter Audits LLC. All Rights Reserved. 5/18

Composable Finance Audit 04 — Vulnerabilities

Ability To Initialize Multiple Times [CRITICAL OS-CFI-ADV-00

Description

In Initialdize , while initializing the staking parameters, due to 1init_if_needed , anyone may alter
the staking parameters with new values multiple times. The ability to initialize the staking parameters
multiple times may result in potential security vulnerabilities. For example, an attacker could repeatedly
call Initialize with different parameters, altering the staking configuration and affecting the entire
protocol.

Remediation
Utilize 1n1it instead of dnit_if_needed for Initialize . This ensures that the initialization only

OCCurs once.

Patch

Fixed by using 1init instead of -dinit_if_needed for Initialize ineS565006.

© 2024 Otter Audits LLC. All Rights Reserved. 6/18

https://github.com/ComposableFi/emulated-light-client/commit/e565006d2be82164358ad5f71bb9384307ba9b80

Composable Finance Audit 04 — Vulnerabilities

Discrepancy In Deposit Functionality cRITICAL 0S-CFI-ADV-01

Description

deposit utilizes remaining_accounts for the cross-program invocation call to the guest chain
program (solana_ibc: :cpi::set_stake). However, the function lacks explicit validation checks on
remaining_accounts . solana_ibc::cpi::set_stake is the invoked cross-program invocation

call. Similarly, this function also lacks explicit validation checks for the accounts passed in CpiContext .

>_ restaking/programs/restaking/src/lib.rs

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
service: Option<Service>,
amount: u64,
) => Result<()> {
[...]

if guest_chain_program_id.is_some() {
[...]
let cpi_program = ctx.remaining_accounts[3].clone();
let cpi_ctx =
CpiContext: :new_with_signer(cpi_program, cpi_accounts, seeds);
solana_ibc::cpi::set_stake(cpi_ctx, amount as ul28)?;

}
Ok(())

Remediation

Add validation checks in both deposit and solana_ibc::cpi::set_stake to ensure that the
required accounts are present and have the correct ownership.

Patch

Fixed by adding validation checks to the remaining_accounts in b7847d9.

© 2024 Otter Audits LLC. All Rights Reserved. 7118

https://github.com/ComposableFi/emulated-light-client/commit/b7847d9d92a44d947526192f7d7912016d48692c

Composable Finance Audit 04 — Vulnerabilities

Missing Receipt Token Balance Check [CRITICAL 0S-CFI-ADV-02

Description

In the implementation of set_service instruction, there is a section of code that sets the service
for the stake which was deposited before guest chain initialization without explicitly checking if the
depositor’s receipt_token_account has a non-zero balance. The code assumes that the depositor

has a sufficient balance in their receipt_token_account to cover the stake, but it fails to check for it
explicitly.

>_ restaking/programs/restaking/src/lib.rs

pub fn set_service<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, SetService<'info>>,
service: Service,

) —> Result<()> {
[...]
vault_params.service = Some(service);
let guest_chain_program_id =

staking_params.guest_chain_program_id.unwrap();

let amount = vault_params.stake_amount;

[oool

Proof of Concept

» A malicious user sets an arbitrary service for a genuine user’s vault_params by calling the
set_service instruction using the genuine user’'s vault_params and an arbitrary Serv-ice.

» Since the code does not check for a non-zero balance in the receipt_token_account, the mali-
cious user may abuse the system by setting an unauthorized stake using the original depositor’s
vault_params.

Remediation

Explicitly check if the depositor's receipt_token_account has a non-zero balance before proceeding

with the stake setting. This check ensures the depositor has access to the respective vault_params .

Patch

Fixed by checking if the depositor’s receipt_token_account has a non-zero balance in €10222d.

© 2024 Otter Audits LLC. All Rights Reserved. 8/18

https://github.com/ComposableFi/emulated-light-client/commit/e10222d8a13d420615c0e46b4ce5a66b7556f684

Composable Finance Audit 04 — Vulnerabilities

Stake Mint Differentiation HiGH OS-CFI-ADV-03

Description

The vulnerability is rooted in deposit , and pertains to the lack of consideration for different token
decimals in solana_ibc::cpi::set_stake , specifically related to the mint of the staked amount.
set_stake is invoked without explicitly providing information about the mint of the staked amount.

>_ restaking/programs/restaking/src/lib.rs

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
service: Option<Service>,
amount: u64,
) —> Result<()> {
[oool

if guest_chain_program_id.is_some() {
[...]
let cpi_program = ctx.remaining_accounts[3].clone();
let cpi_ctx =
CpiContext::new_with_signer (cpi_program, cpi_accounts, seeds);
solana_ibc::cpi::set_stake(cpi_ctx, amount as ul28)?;

}
Ok(())

Oninvoking solana_ibc::cpi::set_stake , it's crucial to include parameters that identify the specific
mint of the staked amount. Tokens on solana may have different decimal places, and each mint may
have a different scale. Without passing information about the mint of the staked amount, there’s a risk
of updating the stake value with an incorrect scale. For instance, staking 10 tokens with 2 decimals and
staking 10 tokens with 6 decimals may result in updating the same value, thus causing the staked amount
to be incorrectly represented.

Remediation

Modify set_stake to accept parameters explicitly indicating the mint of the staked amount. This
adjustment ensures the program accurately manages and updates stakes for various token types.
Patch

Fixed by adding a check in deposit instruction to check if the token_mint has only 9 decimals in
d78a19a.

© 2024 Otter Audits LLC. All Rights Reserved. 9/18

https://github.com/ComposableFi/emulated-light-client/commit/d78a19a05796f620728f0d960b3c068c5222ac69

Composable Finance Audit 04 — Vulnerabilities

Lack Of Sysvar Account Validation HicH OS-CFI-ADV-04

Description

The program passes the instruction sysvar account to both deposit and set_service instruc-
tions, but does not perform validation in the validate_remaining_accounts and even in the

solana_ibc::cpi::set_stake function. Thus, replacing the instruction sysvar account is possi-
ble. They might be able to inject unauthorized instructions into the cross-program invocation calls.

Remediation

Ensure both validation::validate_remaining_accounts and solana_tdibc::cpi::set_stake
include explicit validation for the instruction sysvar account.

Patch

Fixed by checking the instruction sysvar account in b221448.

© 2024 Otter Audits LLC. All Rights Reserved. 10/18

https://github.com/ComposableFi/emulated-light-client/commit/b221448ddb53bab446d6f979395aebbcaa6594c9

Composable Finance Audit 04 — Vulnerabilities

Potential Fund Lockup Low OS-CFI-ADV-05

Description

deposit includes an optional service parameter, which is of type Option<Service> . This
parameter specifies a service associated with the staking operation. The vulnerability arises from the
presence of the service parameter, which is a condition during withdrawal. Specifically, the withdrawal
logic includes a check on the service parameter.

>_ restaking/programs/restaking/src/lib.rs

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
service: Option<Service>,
amount: u64,

) —> Result<()> {
[...]
vault_params.service =
if guest_chain_program_id.is_some() { service } else { None };

The code assumes that the service parameter will always be Some(service) during withdrawal.
However, calling deposit with None for the service parameter would not fulfill the condition. Thus, If

a deposit occurs without specifying a service (i.e., passing None), and the withdrawal logic assumes
that there is always a service (is_some() condition), it may lock up funds.

Remediation
Modify withdraw to ensure compatibility with None values for the service parameter preventing fund

lockup.

Patch

Fixed by added an additional instruction set_service to setthe service parameter after depositing
funds in 57edfe8.

© 2024 Otter Audits LLC. All Rights Reserved. 11/18

https://github.com/ComposableFi/emulated-light-client/commit/57edfe83e9759af072d93d604828a8fbab9d21bd

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

Proposal to replace CpiContext: :new_with_signer with
0S-CFI-SUG-00) i i
CpiContext::new in deposit and set_service instructions.

Change the Option<Service> parameterto Service in deposit to
0S-CFI-SUG-01 .
prevent users from setting vault_params.service to None .

Withdraw does not include the has_one = rewards_token_mint con-
OS-CFI-SUG-02)
straint for the staking_params account.

Optimizing token::transfer and burn_nft by introducing a boolean

0S-CFI-SUG-03 argument or utilizing empty seeds to enable unsigned invocation when signed
invocation is unnecessary.

© 2024 Otter Audits LLC. All Rights Reserved. 12 /18

Composable Finance Audit 05 — General Findings

Context Signer Correction 0S-CFI-SUG-00

Description

CpiContext::new_with_signer creates the context for cross-program invocation. This method is
typically used when a program expects a signed invocation, including the account’s seeds for signature
verification.

Remediation

In deposit and set_service instructions, utilizing CpiContext::new tocall set_stake is more
appropriate and simplifies the context creation.

© 2024 Otter Audits LLC. All Rights Reserved. 13/18

Composable Finance Audit 05 — General Findings

Enforce Mandatory Service Assignment 0S-CFI-SUG-01

Description

While handling the vault_params.service fieldin deposit , currently, it is defined as
Option<Service> , allowing it to be either Some(Service) or None . Thelogicin deposit
utilizes this option to conditionally set the vault_params.service based on

guest_chain_program_id.is_some .

>_ restaking/programs/restaking/src/lib.rs

pub fn deposit<'a, 'info>(
ctx: Context<'a, 'a, 'a, 'info, Deposit<'info>>,
service: Option<Service>,

amount: u64,
) —> Result<()> {
Loool
}

However, the issue arises from the fact that even if guest_chain_program_id is Some , indicating

the guest chain is initialized, the service may still be set to None . This is due to the optionality of the
Service type. Users may set vault_params.service to None even after initializing the chain,
which could undermine the intended behavior of the logic.

Remediation

Change the type of vault_params.service from Option<Service> tojust Service . This
modification ensures that a valid Service must always be provided once the guest chain is initialized.

© 2024 Otter Audits LLC. All Rights Reserved. 14 /18

Composable Finance Audit 05 — General Findings

Missing Constraint 0S-CFI-SUG-02

*

Description

In Claim ,thereisa has_one constraint forthe rewards_token_mint fieldinthe staking_params
account. This constraint ensures a one-to-one relationship between the staking_params account and

the associated rewards_token_mint . However, Withdraw lacks this constraint.

Remediation

Extend this constraint to Withdraw , to maintain the consistency in the code base.

© 2024 Otter Audits LLC. All Rights Reserved. 15/18

Composable Finance Audit 05 — General Findings

Code Optimization 0S-CFI-SUG-03

Description

There is unnecessary signing and seed usage in certain token::transfer and burn_nft function
calls. Specifically, in deposit , callsto token::transfer do notrequire seeds or a signed invocation.

In Withdraw , thereis a callto burn_nft , which also does not require a signed invocation—resulting
in unnecessary signing and seed usage affecting the code’s efficiency.

Remediation

Modify token::transfer and burn_nft to handle both signed and unsigned invocations. This may
be achieved by introducing a boolean argument or checking the seeds’ length.

© 2024 Otter Audits LLC. All Rights Reserved. 16 /18

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

« Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

e Loss of funds requiring specific victim interactions.
« Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

o Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

« Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants.
« Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 17 /18

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program'’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 18 /18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-CFI-ADV-00 | Ability To Initialize Multiple Times
	[8.75em][l]OS-CFI-ADV-01 | Discrepancy In Deposit Functionality
	[8.75em][l]OS-CFI-ADV-02 | Missing Receipt Token Balance Check
	[8.75em][l]OS-CFI-ADV-03 | Stake Mint Differentiation
	[8.75em][l]OS-CFI-ADV-04 | Lack Of Sysvar Account Validation
	[8.75em][l]OS-CFI-ADV-05 | Potential Fund Lockup

	General Findings
	[8.75em][l]OS-CFI-SUG-00 | Context Signer Correction
	[8.75em][l]OS-CFI-SUG-01 | Enforce Mandatory Service Assignment
	[8.75em][l]OS-CFI-SUG-02 | Missing Constraint
	[8.75em][l]OS-CFI-SUG-03 | Code Optimization

	Appendices
	Vulnerability Rating Scale
	Procedure

