
Etherfuse Stablebond
Security Assessment

August 29th, 2024 — Prepared by OtterSec

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 3

Overview 3

Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6

OS-SVB-ADV-00 | Overlapping of Multiple Issuances Simultaneously 8

OS-SVB-ADV-01 | Failure to Validate Initialization Parameters 10

OS-SVB-ADV-02 | Discriminator Check Bypass 12

OS-SVB-ADV-03 | Bypassing Token Account Initialization 13

OS-SVB-ADV-04 | Absence of Verification of Issuance Account Index 15

OS-SVB-ADV-05 | Interest Rate Accumulation 17

OS-SVB-ADV-06 | Lack of Timestamp and Bond Validation 18

OS-SVB-ADV-07 | Mismatch In Expected Decimal Value Resulting In DOS 20

OS-SVB-ADV-08 | Multiple Inconsistencies In Bond Redemption 22

OS-SVB-ADV-09 | Excessively Long Price Feed Expiry Period 24

General Findings 25

OS-SVB-SUG-00 | Code Maturity 26

OS-SVB-SUG-01 | Missing Validation Logic 27

OS-SVB-SUG-02 | Additional Safety Checks 28

OS-SVB-SUG-03 | Unutilized Code 30

OS-SVB-SUG-04 | Redundant Code in CPI Calls 31

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 34

Etherfuse Stablebond Audit

TABLE OF CONTENTS

Appendices

Vulnerability Rating Scale 33

Procedure 34

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 34

01 — Executive Summary

Overview

Etherfuse engaged OtterSec to assess the stablebondstablebond program. This assessment was conducted

between August 17th and August 24th, 2024. For more information on our auditing methodology, refer to

Appendix B.

Key Findings

We produced 15 findings throughout this audit engagement.

In particular, we identified several high-risk vulnerabilities, including the lack of discriminator verification,

allowing the possibility of an attacker substituting the intended account with another account of a similar

structure (OS-SVB-ADV-02), and the possibility of bypassing the lamports-based check for token

account initialization by tricking the program into thinking that a specific account already holds lamports,

thus skipping the initialization process (OS-SVB-ADV-03). We also highlighted the accumulation of the

interest rate even when no issuance is active, resulting in artificially inflated bond prices and enabling

users to receive extra rewards for periods without an active issuance (OS-SVB-ADV-05).

Furthermore, while initializing and starting issuances, there is no check for existing active issuances,

allowingmultiple overlapping issuances on the same bond, whichmay result in improper reward distribution

(OS-SVB-ADV-00). Moreover, there are multiple inconsistencies with the bond redemption instruction,

including missing verifications, incorrect checks, and failure to clean up accounts properly (OS-SVB-

ADV-08). Additionally, the issuance payout process fails to validate the current timestamp and whether

an issuance is associated with the correct bond, enabling premature closure of the issuance and incorrect

bond issuances, respectively (OS-SVB-ADV-06).

We also made recommendations to ensure adherence to coding best practices (OS-SVB-SUG-00) and

suggested the removal of unutilized and redundant code within the system for increased readability

(OS-SVB-SUG-03, OS-SVB-SUG-04). We further advised incorporating additional checks within the

codebase for improved robustness and security (OS-SVB-SUG-02).

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 34

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/etherfuse/stablebond. This

audit was performed against commit 40f8eb3.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

stablebond
A yield-bearing stablebond which utilizes the token 2022 extension,

allowing it to accrue interest while it is held.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 34

https://github.com/etherfuse/stablebond
https://github.com/etherfuse/stablebond/commit/40f8eb316d4657ca957048078b1edccf8837bbb8

03 — Findings

Overall, we reported 15 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 4

MEDIUMMEDIUM 5

LOWLOW 1

INFOINFO 5

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 34

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-SVB-ADV-00
HIGHHIGH RESOLVEDRESOLVED

The InitializeIssuanceInitializeIssuance and StartIssuanceStartIssuance
instructions do not check for existing active is-

suances, allowing multiple overlapping issuances on

the same bond, which may result in improper reward

distribution.

OS-SVB-ADV-01
HIGHHIGH RESOLVEDRESOLVED

process_initialize_configprocess_initialize_config lacks proper vali-

dation for PaymentFeedInfoPaymentFeedInfo inputs, such as owner

checks for payment_mintpayment_mint and feedfeed accounts,

as well as validations for payment_feed_typepayment_feed_type and

payment_decimalspayment_decimals .

OS-SVB-ADV-02
HIGHHIGH RESOLVEDRESOLVED

unpack_from_sliceunpack_from_slice lacks discriminator verifica-

tion, allowing the possibility of an attacker substituting

the intended account with another account of a similar

structure.

OS-SVB-ADV-03
HIGHHIGH RESOLVEDRESOLVED

The lamports-based check for token account initial-

ization may be bypassed by tricking the program into

thinking that a specific account already holds lam-

ports, thus skipping the initialization process.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

OS-SVB-ADV-04
MEDIUMMEDIUM RESOLVEDRESOLVED

process_redeem_purchase_orderprocess_redeem_purchase_order does not

verify the issuance account’s index via seeds,

allowing an attacker to provide an outdated is-

suance and purchase bonds at a lower price.

Also, user_payment_token_account_infouser_payment_token_account_info
is missing any account checks

process_create_purchase_orderprocess_create_purchase_order .

OS-SVB-ADV-05
MEDIUMMEDIUM RESOLVEDRESOLVED

The protocol incorrectly allows the interest rate to

accumulate even when no issuance is active, resulting

in artificially inflated bond prices and enabling users

to receive extra rewards for periods without an active

issuance.

OS-SVB-ADV-06
MEDIUMMEDIUM RESOLVEDRESOLVED

process_payout_issuanceprocess_payout_issuance fails to validate the

current timestamp and whether an issuance is as-

sociated with the correct bond, enabling premature

closure of the issuance and incorrect bond issuances,

respectively.

OS-SVB-ADV-07
MEDIUMMEDIUM RESOLVEDRESOLVED

process_initialize_bondprocess_initialize_bond allows bond tokens

to be initialized with decimals other than six, while

mint_to_instructionmint_to_instruction and get_bond_priceget_bond_price ex-

pect the decimals to be exactly six.

OS-SVB-ADV-08
MEDIUMMEDIUM RESOLVEDRESOLVED

There are multiple inconsistencies with the

process_redeem_bondprocess_redeem_bond instruction, including

missing verifications, incorrect checks, and failure to

clean up accounts properly.

OS-SVB-ADV-09
LOWLOW RESOLVEDRESOLVED

The MAX_AGE_OF_PRICE_FEEDMAX_AGE_OF_PRICE_FEED constant is set to

one hour, which may be too long and may expose the

system to outdated or stale price feeds.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Overlapping of Multiple Issuances Simultaneously HIGHHIGH OS-SVB-ADV-00

Description

The InitializeIssuanceInitializeIssuance and StartIssuanceStartIssuance instructions do not check if there is an active issuance

already running under the bond before initiating a new one. This oversight allows multiple issuances to be

active simultaneously. The design flaw allows the possibility of multiple overlapping issuances under the

same bond. Since all issuances are tied to the same bond token, each issuance accrues interest over time.

If multiple issuances overlap, it complicates the distribution of interest and rewards because the interest

calculation and reward distribution mechanisms are designed to handle a single active issuance at a time.

>_ src/commands/initialize_issuance.rs rust

pub fn handle_initialize_issuance(args: InitializeIssuanceArgs) -> Result<()> {
[...]
let estimated_start_datetime = if bond.issuance_number == 0 {

match args.estimated_start_datetime {
Some(estimated_start_datetime) => estimated_start_datetime,
None => bail!("Estimated start datetime required for first issuance"),

}
} else {

match args.estimated_start_datetime {
Some(estimated_start_datetime) => bail!(

"Estimated start datetime only allowed for first issuance, provided {}",
estimated_start_datetime

),
None => {

let issuance_account = find_issuance_pda(bond_account, bond.issuance_number).0;
let data = config.client.get_account_data(&issuance_account)?;
let issuance = Issuance::from_bytes(&data).unwrap();
issuance.actual_start_datetime + issuance.length_in_seconds

}
}

};
[...]

}

With overlapping issuances, users who hold bond tokens from different issuances may receive improper or

incorrect distributions of rewards. For example, interest accrued for a bond might be incorrectly allocated

across multiple issuances, resulting in improper distribution among bondholders.

Furthermore, the CollectPaymentCollectPayment instruction allows delegators to collect payments from a bond

issuance. However, the current implementation restricts the delegator to collecting payments only from

the latest active issuance. This restriction may result in a scenario where user funds are locked if a new

issuance starts before the previous one is fully settled and users have purchased bonds in both issuances.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Remediation

Include a check in InitializeIssuanceInitializeIssuance to ensure no active issuanceissuance is currently running. Specifically,

for any new issuanceissuance (issuance_number > 0issuance_number > 0), before initializing a new issuanceissuance , calculate the
end_timeend_time of the latest active issuance. Ensure that the estimated_start_datetimeestimated_start_datetime of the new

issuanceissuance is after this end_timeend_time . Also, modify the CollectPaymentCollectPayment instruction to allow payment

collection from any active issuance in which the user holds bonds, not just the latest.

Patch

Resolved in #104.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 34

https://github.com/etherfuse/stablebond/pull/104

Etherfuse Stablebond Audit 04 — Vulnerabilities

Failure to Validate Initialization Parameters HIGHHIGH OS-SVB-ADV-01

Description

In config::process_initialize_configconfig::process_initialize_config , there is a lack of proper input validation for the
PaymentFeedInfoPaymentFeedInfo structure and the associated InitializePaymentFeedInitializePaymentFeed instruction. Specifically,

the function does not verify that the provided payment_mintpayment_mint and feedfeed accounts are controlled by

the appropriate entities or that they have the expected properties, and the payment_feed_typepayment_feed_type value

is not validated to ensure it is set to UsdcUsdUsdcUsd . Also, the payment_decimalspayment_decimals value is taken from the

input without any verification to check if it matches the actual decimals defined in the mint account (the

payment token).

>_ src/state/payment_feed.rs rust

pub struct PaymentFeed {
/// PDA Discriminator
pub discriminator: Descriminator, // 1
/// Version of the program
pub version: u8, // 1
/// The mint of the payment token
pub payment_mint: Pubkey, // 32
/// The decimals of the payment token
pub payment_decimals: u8, // 1
/// The base price feed account
pub base_price_feed: Pubkey, // 32
/// The quote price feed account
pub quote_price_feed: Pubkey, // 32
/// The payment feed type
pub payment_feed_type: PaymentFeedType, // 1

}

These validations are performed later in the remaining instructions, which will result in a denial-of-service

if incorrect values are accidentally initiated in the beginning in

config::process_initialize_configconfig::process_initialize_config . As an example, the payment_decimalspayment_decimals are taken from

input without validation, but they are validated against the mint in process_collect_paymentprocess_collect_payment . Thus,
if payment_decimalspayment_decimals are initialized incorrectly, this results in rejecting the transactions, effectively

resulting in a DoS condition. Also, the discriminatordiscriminator and versionversion fields in the PaymentFeedInfoPaymentFeedInfo

structure are redundant. A similar issue is present in the InitializePaymentFeedInitializePaymentFeed instruction.

Remediation

Modify PaymentFeedInfoPaymentFeedInfo so that it consists only of payment_mintpayment_mint and feedfeed accounts, and validate

these two accounts. The remaining fields may be derived after performing validation.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Patch

Resolved in 47a7b82.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 34

https://github.com/etherfuse/stablebond/pull/104/commit/47a7b82695046c56bb99ce1b3cd67badd9e82650

Etherfuse Stablebond Audit 04 — Vulnerabilities

Discriminator Check Bypass HIGHHIGH OS-SVB-ADV-02

Description

The vulnerability concerns the lack of discriminator verification in all instances of unpack_from_sliceunpack_from_slice
within the codebase. Discriminators are utilized to differentiate between different account types.

unpack_from_sliceunpack_from_slice performs deserialization of the account data but does not explicitly check the

discriminator. Thus, instructions may be exploited by passing one account in place of another.

>_ src/state/payment.rs rust

fn unpack_from_slice(src: &[u8]) -> Result<Self, ProgramError> {
let mut p = src;
let payment = Self::deserialize(&mut p).map_err(|_| {

msg!("Failed to deserialize Payment");
ProgramError::InvalidAccountData

})?;
if !payment.is_initialized() {

return Err(ErrorCode::PaymentNotInitialized.into());
}
Ok(payment)

}

As an example, in process_purchase_bondprocess_purchase_bond , it is possible to substitute a PayoutPayout account for a

PaymentPayment account. Since both PayoutPayout and PaymentPayment have the issuance key in the same position, the

issuance check will be bypassed as no discriminator checks are performed to differentiate between these

two account types. Consequently, the payment tokens sent by the user will be transferred to the PayoutPayout
account instead. Although the attacker wouldn’t be able to directly collect these tokens if the Payout

account is not set up to do so, they would still successfully obtain the bonds.

Remediation

Ensure that the discriminatordiscriminator is checked in unpack_from_sliceunpack_from_slice to verify the account type before

processing it. This helps to ensure that the account data is of the expected type.

Patch

Resolved in ed8cf39.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 34

https://github.com/etherfuse/stablebond/pull/104/commit/ed8cf39

Etherfuse Stablebond Audit 04 — Vulnerabilities

Bypassing Token Account Initialization HIGHHIGH OS-SVB-ADV-03

Description

In the current implementation of bond::process_purchase_bondbond::process_purchase_bond and

purchase_order::process_redeem_purchase_orderpurchase_order::process_redeem_purchase_order (shown below), there may be a potential

vulnerability in method of determining the initialization status of a token account

(user_token_account_infouser_token_account_info). These functions check if the lamports balance of
user_token_account_infouser_token_account_info is zero to determine if the token account is initialized. If the balance is

zero, the account is assumed to be uninitialized, and the program proceeds to create the token account.

>_ src/processor/purchase_order.rs rust

pub fn process_redeem_purchase_order(
_program_id: &Pubkey,
accounts: &[AccountInfo],

) -> ProgramResult {
[...]
// create token account if needed for the bonds
{

if user_token_account_info.lamports() == 0 {
invoke(

&Bond::create_token_account_instruction(
user_wallet_account_info.key,
mint_account_info.key,
token_2022_program_info.key,

),
&[

[...]
],

)?;
}

}
[...]

}

However, it is possible to exploit this particular method by sending a small amount of lamports to

user_token_account_infouser_token_account_info before the user attempts to execute process_purchase_bondprocess_purchase_bond or

process_redeem_purchase_orderprocess_redeem_purchase_order . Since the account will then have a non-zero lamport balance, the
program will incorrectly assume that the account is already initialized and skip the initialization process.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Remediation

Check the data_lendata_len of user_token_account_infouser_token_account_info instead of checking the lamports balance. The

data_lendata_len property reflects the size of the data stored in the account, which will be non-zero if the

account is initialized properly with a token program.

Patch

Resolved in cf2fc93.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 34

https://github.com/etherfuse/stablebond/pull/104/commit/cf2fc93

Etherfuse Stablebond Audit 04 — Vulnerabilities

Absence of Verification of Issuance Account Index MEDIUMMEDIUM OS-SVB-ADV-04

Description

In purchase_order::process_redeem_purchase_orderpurchase_order::process_redeem_purchase_order , it is not verified that the provided issuance
account corresponds to a valid and current issuance. Specifically, it does not check if the index of the

issuance account matches the expected value derived from deterministic seeds. An attacker may provide

an old issuance account, where the bond price was lower due to previous market conditions or earlier

issuance terms. Since the issuance index is not validated against the current issuance number stored in

bondbond , the system will incorrectly accept this outdated issuance as valid. Thus, by purchasing the bonds

at a lower price, the attacker would make an instant profit.

>_ src/processor/purchase_order.rs rust

pub fn process_redeem_purchase_order(
_program_id: &Pubkey,
accounts: &[AccountInfo],

) -> ProgramResult {
[...]
// #[account(3, name = "issuance_account")]
validate!(

issuance_account_info.owner == &crate::ID,
ErrorCode::InvalidIssuanceOwner

)?;
let issuance = Issuance::unpack(&issuance_account_info.data.borrow())?;
validate!(

issuance.status == IssuanceStatus::Started || issuance.status ==
IssuanceStatus::Matured,↪→

ErrorCode::InvalidIssuanceStatus
)?;
validate!(

issuance.parent_bond == *bond_account_info.key,
ErrorCode::InvalidIssuance

)?;

Ok(())
}

Additionally, process_create_purchase_orderprocess_create_purchase_order is missing account checks for the

user_payment_token_account_infouser_payment_token_account_info account. As a result of this, it is possible for

user_payment_token_account_infouser_payment_token_account_info to be set to another user’s account.

Remediation

Verify the issuance index with bond.issuance_numberbond.issuance_number and add account checks for

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

user_payment_token_account_infouser_payment_token_account_info .

Patch

Resolved in 6850535.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 34

https://github.com/etherfuse/stablebond/pull/104/commit/6850535

Etherfuse Stablebond Audit 04 — Vulnerabilities

Interest Rate Accumulation MEDIUMMEDIUM OS-SVB-ADV-05

Description

The issue revolves around the improper handling of interest rate accumulation, specifically during periods

when no active issuance is taking place. The protocol allows buying bonds during one issuance and

redeeming them in another. However, the rate for the interest-bearing extension does not reset to zero

after an issuance is completed, resulting in the interest-bearing rate continuing to accumulate. This

creates a scenario where, even when there is no active issuance, the rate increases, artificially inflating

bond prices. Thus, users receive extra rewards for the time when no issuance is active.

Remediation

Ensure that all interest-bearing extensions are properly reset to zero after each issuance ends.

Patch

Resolved in cf2fc93.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 34

https://github.com/etherfuse/stablebond/pull/104/commit/cf2fc93

Etherfuse Stablebond Audit 04 — Vulnerabilities

Lack of Timestamp and Bond Validation MEDIUMMEDIUM OS-SVB-ADV-06

Description

issuance::process_payout_issuanceissuance::process_payout_issuance fails to check whether the current timestamp has passed the

expected maturity time of the issuance before changing its status to Matured. This oversight may result

in several problems. Normally, an issuance has a defined maturity period. This period is determined

by the actual_start_datetimeactual_start_datetime and length_in_secondslength_in_seconds fields, which together specify the exact

time when the issuance should mature. In process_payout_issuanceprocess_payout_issuance , the current timestamp is not
checked to be greater than actual_start_datetime + length_in_secondsactual_start_datetime + length_in_seconds , and as a result, the

function may prematurely close an issuance, even if the intended maturity date has not been reached.

>_ src/processor/issuance.rs rust

pub fn process_payout_issuance(_program_id: &Pubkey, accounts: &[AccountInfo]) -> ProgramResult
{↪→

[...]
// #[account(0, name = "config_account")]
validate!(

config_account_info.key == &Config::address(),
ErrorCode::InvalidConfigAddress

)?;
validate!(

*config_account_info.owner == crate::ID,
ErrorCode::InvalidConfigOwner

)?;
// #[account(1, name = "delegate_account")]
validate!(

delegate_account_info.key == &Delegate::address(delegate_wallet_info.key),
ErrorCode::InvalidDelegateAddress

)?;
validate!(

delegate_account_info.data_len() != 0,
ErrorCode::DelegateNotInitialized

)?;
validate!(

*delegate_account_info.owner == crate::ID,
ErrorCode::InvalidDelegateOwner

)?;
[...]

}

As this instruction changes the issuance status to Matured, users who hold bond tokens associated with

this issuance and expect to redeem them after the issuance has matured will be unable to redeem their

bond tokens for that issuance. Thus, due to the function’s lack of timestamp validation, an issuance may

be marked as mature prematurely, disrupting the proper flow of payouts and impacting the overall integrity

of the issuance system.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Furthermore, process_payout_issuanceprocess_payout_issuance does not validate whether the issuance is associated with

the correct bond by checking issuance.parent_bondissuance.parent_bond . This missing check implies that the function
may process payouts for an issuance that does not belong to the specified bond account

(bond_account_infobond_account_info).

Remediation

Add a check to ensure that the current timestamp is greater than the calculated maturity timestamp (

actual_start_datetime + length_in_secondsactual_start_datetime + length_in_seconds) before proceeding with the status change. Ad-

ditionally, include a check to ensure that issuance.parent_bond == *bond_account_info.keyissuance.parent_bond == *bond_account_info.key in

process_payout_issuanceprocess_payout_issuance .

Patch

Resolved in #104.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 34

https://github.com/etherfuse/stablebond/pull/104

Etherfuse Stablebond Audit 04 — Vulnerabilities

Mismatch In Expected Decimal Value Resulting In DOS MEDIUMMEDIUM OS-SVB-ADV-07

Description

bond::process_initialize_bondbond::process_initialize_bond is responsible for initializing a bond token, including setting up the

token’s decimals. The decimalsmay be any value between 0 and 19, as provided by the input during the ini-

tialization process. However, in PaymentFeed::get_bond_pricePaymentFeed::get_bond_price and Bond::mint_to_instructionBond::mint_to_instruction
, the bond’s decimals are expected to be exactly six. This is enforced through validation checks.

>_ src/processor/bond.rs rust

#[allow(unused_variables)]
pub fn process_initialize_bond(

_program_id: &Pubkey,
accounts: &[AccountInfo],
data: InitializeBondInstruction,

) -> ProgramResult {
[...]
let InitializeBondInstruction {

decimals,
[...]

} = data;

validate!(
decimals <= 19,
ErrorCode::InvalidArgument,
"Decimals must be less than or equal to 19"

)?;
[...]

}

Consequently, if a bond is initialized with a decimal value different from six within

process_initialize_bondprocess_initialize_bond , subsequent calls to get_bond_priceget_bond_price and mint_to_instructionmint_to_instruction
will fail due to these strict validation checks. This will result in a Denial of Service (DoS) scenario as the

bond initialization will fail.

A similar issue exists in payment_feed::get_bond_pricepayment_feed::get_bond_price . process_start_issuanceprocess_start_issuance in issuanceissuance

derives the scaling_factorscaling_factor from Bond::DECIMALSBond::DECIMALS , which is hard-coded to six. In

get_bond_priceget_bond_price , however, when calculating ui_bond_priceui_bond_price utilizing

amount_to_ui_amountamount_to_ui_amount , the scaling_factorscaling_factor is taken from an external source (derived from

payment_decimalspayment_decimals). If payment_decimalspayment_decimals is not equal to six, the scaling factor will differ from

the one utilized in process_start_issuanceprocess_start_issuance , resulting in the calculation of an incorrect bond price.

© 2024 Otter Audits LLC. All Rights Reserved. 20 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Remediation

Ensure consistency in how decimals are handled across the entire application. If the intention is for bonds

to strictly have six decimals, this should be enforced during bond initialization in

process_initialize_bondprocess_initialize_bond , by hard-coding the decimals to Bond::DECIMALSBond::DECIMALS instead of accepting

them as user input.

Patch

Resolved in #104.

© 2024 Otter Audits LLC. All Rights Reserved. 21 / 34

https://github.com/etherfuse/stablebond/pull/104

Etherfuse Stablebond Audit 04 — Vulnerabilities

Multiple Inconsistencies In Bond Redemption MEDIUMMEDIUM OS-SVB-ADV-08

Description

There is a logical flaw in the way the user’s bond token accounts are managed and closed in

bond::process_redeem_bondbond::process_redeem_bond . The cross-program invocation (CPI) call to

NftIssuanceVault::close_user_token_accountNftIssuanceVault::close_user_token_account utilizes user_wallet_account_infouser_wallet_account_info and

mint_account_infomint_account_info but does not provide the specific token account that should be closed. Also,

user_token_accountuser_token_account is unpacked from user_payment_token_account_infouser_payment_token_account_info , which implies that

the if user_token_account.amount == 0if user_token_account.amount == 0 condition (intended to check if the user’s token account

balance is zero to determine if it should be closed) is checking the balance of the payment token account

rather than the bond token account.

>_ src/processor/bond.rs rust

pub fn process_redeem_bond(_program_id: &Pubkey, accounts: &[AccountInfo]) -> ProgramResult {
[...]
// Close users bond token account if they don't have anymore
{

let user_token_account =
Token2022Account::unpack_from_slice(&user_payment_token_account_info.data.borrow())?;
msg!("User Token Account Amount: {}", user_token_account.amount);
if user_token_account.amount == 0 {

invoke(
&NftIssuanceVault::close_user_token_account(

user_wallet_account_info.key,
mint_account_info.key,

),
&[

user_wallet_account_info.clone(),
token_2022_program_info.clone(),

],
)?;

}
}
[...]

}

Furthermore, there is an absence of utilization of the close_nft_token_accountclose_nft_token_account in the

process_redeem_bondprocess_redeem_bond instruction and a lack of verification of the payment_mint_account_infopayment_mint_account_info us-

ing the PaymentFeedPaymentFeed . Without verification, there is no guarantee that the payment_mint_account_infopayment_mint_account_info
provided by the user corresponds to the expected token mint.

© 2024 Otter Audits LLC. All Rights Reserved. 22 / 34

Etherfuse Stablebond Audit 04 — Vulnerabilities

Remediation

Move the bond token account closing to the request_redeemrequest_redeem instruction, as the closing of accounts

should typically occur when a user’s position or holding in that asset is fully redeemed or withdrawn, not at

the point of processing the redemption. Also, ensure the correctness of checks and that all accounts are

included within the CPI call, and verify the payment_mint_account_infopayment_mint_account_info using the PaymentFeedPaymentFeed .

Patch

Resolved in #104.

© 2024 Otter Audits LLC. All Rights Reserved. 23 / 34

https://github.com/etherfuse/stablebond/pull/104

Etherfuse Stablebond Audit 04 — Vulnerabilities

Excessively Long Price Feed Expiry Period LOWLOW OS-SVB-ADV-09

Description

In the protocol, the current setting of one hour for MAX_AGE_OF_PRICE_FEEDMAX_AGE_OF_PRICE_FEED implies that price data up

to one hour old is still considered valid and usable. A longer maximum age allows for more time to pass

before data is considered stale. This may be problematic in volatile markets where prices may change

rapidly. Relying on outdated prices reduces the reliability and effectiveness of the protocol. A typical

timeframe for maximum safety in price feeds is around 5 minutes.

>_ src/constants.rs rust

cfg_if::cfg_if! {
if #[cfg(feature = "mainnet-beta")] {

pub const MAX_AGE_OF_PRICE_FEED: u64 = 60 * 60; // 1 hour
} else {

pub const MAX_AGE_OF_PRICE_FEED: u64 = 60 * 60 * 24 * 7; // 1 week
}

}

Remediation

Ensure the price feed becomes stale after a shorter time period. For comparison, Solend utilizes a much

shorter period with their STALE_AFTER_SLOTS_ELAPSEDSTALE_AFTER_SLOTS_ELAPSED constant set to 240 slots, roughly equivalent

to 2 minutes.

Patch

Resolved in #104.

© 2024 Otter Audits LLC. All Rights Reserved. 24 / 34

https://github.com/etherfuse/stablebond/pull/104

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-SVB-SUG-00
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

OS-SVB-SUG-01
There are several instances where proper validation is not performed, re-

sulting in potential security issues.

OS-SVB-SUG-02
Additional safety checks may be incorporated within the codebase to make

it more robust and secure.

OS-SVB-SUG-03
The codebase contains multiple cases of redundancy that should be re-

moved for better maintainability and clarity.

OS-SVB-SUG-04 Recommendations to remove unnecessary code from CPI calls.

© 2024 Otter Audits LLC. All Rights Reserved. 25 / 34

Etherfuse Stablebond Audit 05 — General Findings

Code Maturity OS-SVB-SUG-00

Description

1. There is a lack of functionality to pause or remove a delegate, which may be crucial in scenarios

such as a delegate key compromise. Adding this capability will improve the program’s security by

allowing the system to quickly respond to and mitigate potential threats.

2. In the current implementation, signer seeds are being initialized multiple times instead of re-utilizing

them. For example, in the ConfigConfig account, the seeds in process_initialize_configprocess_initialize_config are

initiated six times, impacting efficiency.

3. Within the codebase, DiscriminatorDiscriminator is spelled incorrectly in the structure name as

DescriminatorDescriminator .

>_ src/generated/types/descriminator.rs rust

#[derive(BorshSerialize, BorshDeserialize, Clone, Debug, Eq, PartialEq, PartialOrd, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub enum Descriminator {

[...]
}

4. Currently, there is no common functionality for verifying account initializations to eliminate redundant

checks such as writable status, data_is_emptydata_is_empty check, ownership by the system program, signer

verification (if not a PDAPDA), and address checks for PDAPDA s. These checks are implemented multiple
times across different parts of the codebase.

Remediation

1. Add functionality for pausing and removing a delegate.

2. Maintain a signer_seedssigner_seeds function on data structures to reduce code redundancy and improve

maintainability within the codebase.

3. Ensure the structure name is spelled correctly.

4. Implement a common utility function to encapsulate all the account initialization checks to improve

code clarity and ensure that no checks are missed during future development.

© 2024 Otter Audits LLC. All Rights Reserved. 26 / 34

Etherfuse Stablebond Audit 05 — General Findings

Missing Validation Logic OS-SVB-SUG-01

Description

1. Utilize unpackunpack over unpack_from_sliceunpack_from_slice in all cases to ensure that accounts are correctly

initialized with the appropriate size and layout. In addition to deserializing data, unpackunpack performs

a check to ensure that the length of the byte slice matches the expected size of the deserialized

structure.

2. Add a check to ensure that InitializeBondInstructionArgs.payment_feed_typeInitializeBondInstructionArgs.payment_feed_type is not equal

to PaymentFeedType::StubPaymentFeedType::Stub during bond initialization. Also, include version and initialization

checks for the AccessPassAccessPass structure.

3. To verify that an issuance has not already matured, add a check in process_purchase_bondprocess_purchase_bond to

ensure issuance.status == Startedissuance.status == Started .

4. Implement address checks utilizing seeds for PDAPDA s, ATAATA s, etc., wherever possible to catch

errors earlier, rather than allowing them to be reverted later during CPICPI calls. For example, for

AccessPassAccessPass instructions, the access pass address may be checked utilizing the seeds early on.

5. Utilize payment_feed::check_payment_feed_accountspayment_feed::check_payment_feed_accounts to verify the payment feed along with

feed accounts, as the current checks seem inefficient in comparison.

Remediation

Incorporate the above validations into the codebase.

© 2024 Otter Audits LLC. All Rights Reserved. 27 / 34

Etherfuse Stablebond Audit 05 — General Findings

Additional Safety Checks OS-SVB-SUG-02

Description

1. The writable account checks may not be stringent in the codebase currently, relying on CPICPI calls

to catch errors if an account is not writable when expected. These checks are performed indirectly

through error handling in CPICPI calls, which implies issues may not be immediately obvious or may

only surface during more complex interactions.

2. In the current implementation of purchase_order::process_create_purchase_orderpurchase_order::process_create_purchase_order , there
is no validation to ensure that the nft_collection_mintnft_collection_mint specified in the configconfig matches

the nft_collection_mint_account_info.keynft_collection_mint_account_info.key . As a result, any NFTNFT collection mint may be

utilized.

3. In PurchaseBondPurchaseBond , when handling payments or transactions, the system does not verify if the

payment token accounts are Associated Token Accounts (ATAs). Thus, it does not ensure that the

payment accounts utilized are properly set up as ATAs for the specific token involved. Therefore,

the admin ends up tracking all token accounts, including those that may not be properly set up or

managed, resulting in additional overhead and management complexity for the admin.

4. The program does not ensure the reliability of the prices fetched from Pyth and Switchboard due to a

lack of threshold and price confidence checks. This may result in the application utilizing inaccurate

or unreliable price data, negatively affecting the overall system integrity. Additionally, the account

owner check is missing in SwitchboardV2PriceFeed::load_checkedSwitchboardV2PriceFeed::load_checked .

>_ src/state/oracle.rs rust

pub fn load_checked(
ai: &AccountInfo,
current_time: i64,
max_age: u64,

) -> Result<Self, ErrorCode> {
let price_feed = load_pyth_price_feed(ai)?;
let ema_price = price_feed

.get_ema_price_no_older_than(current_time, max_age)

.ok_or(ErrorCode::StaleOracle)?;
[...]

}

© 2024 Otter Audits LLC. All Rights Reserved. 28 / 34

Etherfuse Stablebond Audit 05 — General Findings

Remediation

1. Raise custom errors when writable checks fail to provide immediate feedback. This allows faster

identification of issues with account permissions or state, without waiting for errors to propagate

through CPI calls.

2. Check that config.nft_collection_mintconfig.nft_collection_mint is equal to nft_collection_mint_account_info.keynft_collection_mint_account_info.key
in purchase_order::process_create_purchase_orderpurchase_order::process_create_purchase_order .

3. Implement checks in the PurchaseBondPurchaseBond process to verify that the payment token accounts are

ATAs.

4. Ensure that the price data meets a minimum threshold of confidence to help avoid issues arising

from incorrect or volatile price feeds. Also, add the account owner check in

SwitchboardV2PriceFeed::load_checkedSwitchboardV2PriceFeed::load_checked .

© 2024 Otter Audits LLC. All Rights Reserved. 29 / 34

Etherfuse Stablebond Audit 05 — General Findings

Unutilized Code OS-SVB-SUG-03

Description

The following functions, variables, or accounts are either redundant or not utilized and may be removed:

1. The token_metadatatoken_metadata variable in process_initialize_bondprocess_initialize_bond is redundant.

2. In process_start_issuanceprocess_start_issuance , ending_token_amountending_token_amount is updated twice on issuance.

3. The config_account_infoconfig_account_info account is unutilized in process_payout_issuanceprocess_payout_issuance and

process_purchase_bondprocess_purchase_bond .

4. In Issuance::is_currently_within_windowIssuance::is_currently_within_window and Bond::mint_to_instructionBond::mint_to_instruction , the

length_in_secondslength_in_seconds argument and the mintmint argument, respectively, are redundant as they may

be acquired from selfself instead.

5. Multiplying the scaling_factorscaling_factor by one in PaymentFeedType::get_bond_pricePaymentFeedType::get_bond_price is redundant.

6. In process_add_access_passprocess_add_access_pass , the check to verify that user_token_account.owneruser_token_account.owner is equal

to *user_wallet_account_info.key*user_wallet_account_info.key is performed twice.

7. In process_initialize_bondprocess_initialize_bond , the token_metadatatoken_metadata is defined but not utilized.

Remediation

Remove all above-mentioned cases of unutilized or redundant code.

© 2024 Otter Audits LLC. All Rights Reserved. 30 / 34

Etherfuse Stablebond Audit 05 — General Findings

Redundant Code in CPI Calls OS-SVB-SUG-04

Description

1. In process_request_redemptionprocess_request_redemption (shown below) and process_create_purchase_orderprocess_create_purchase_order ,

the NftIssuanceVault::create_account_instructionNftIssuanceVault::create_account_instruction and

PurchaseOrder::create_account_instructionPurchaseOrder::create_account_instruction CPICPI calls, respectively, do not require

nft_mint_account_infonft_mint_account_info and token_program_infotoken_program_info accounts.

2. In process_request_redemptionprocess_request_redemption (shown below), it is not necessary to pass

config_account_infoconfig_account_info to NftIssuanceVault::create_nft_mintNftIssuanceVault::create_nft_mint CPICPI call. Similarly,

user_account_infouser_account_info is unnecessary for the NftIssuanceVault::mint_nftNftIssuanceVault::mint_nft CPICPI call.

>_ src/processor/bond.rs rust

pub fn process_request_redemption(
_program_id: &Pubkey,
accounts: &[AccountInfo],
data: RequestRedemptionInstruction,

) -> ProgramResult {
[...]
// Create the Nft Issuance Vault Token account for the bonds
{

let seed = NftIssuanceVault::seed();
let bump = NftIssuanceVault::address_with_bump(nft_mint_account_info.key).1;
let signer_seeds = &[seed, nft_mint_account_info.key.as_ref(), &[bump]];
invoke_signed(

&NftIssuanceVault::create_nft_token_account_instruction(
user_account_info.key,
nft_mint_account_info.key,
mint_account_info.key,

),
&[

user_account_info.clone(),
nft_issuance_vault_token_account_info.clone(),
nft_issuance_vault_account_info.clone(),
mint_account_info.clone(),

],
&[signer_seeds],

)?;
}
[...]

}

© 2024 Otter Audits LLC. All Rights Reserved. 31 / 34

Etherfuse Stablebond Audit 05 — General Findings

3. There are multiple instances where invoke_signedinvoke_signed is unnecessarily utilized instead of invokeinvoke
, adding more complexity. For the following cross program invocations, invokeinvoke maybe utilized

rather than invoke_signedinvoke_signed :

(a) NftIssuanceVault::create_nft_mintNftIssuanceVault::create_nft_mint and

NftIssuanceVault::create_nft_token_account_instructionNftIssuanceVault::create_nft_token_account_instruction CPICPI calls in

process_request_redemptionprocess_request_redemption .

(b) Config::create_mintConfig::create_mint and Config::create_token_account_instructionConfig::create_token_account_instruction CPICPI calls

in process_initialize_configprocess_initialize_config .

(c) Payment::create_token_account_instructionPayment::create_token_account_instruction and

Payout::create_token_account_instructionPayout::create_token_account_instruction CPICPI calls in

process_initialize_issuanceprocess_initialize_issuance .

(d) PurchaseOrder::create_nft_mintPurchaseOrder::create_nft_mint CPICPI call in process_create_purchase_orderprocess_create_purchase_order .

4. It is not necessary to add the authority to the signer_pubkeyssigner_pubkeys array utilized for MultiSigMultiSig in the

below-listed CPICPI calls:

(a) In process_purchase_bondprocess_purchase_bond - transfer_checkedtransfer_checked CPICPI call.

(b) In process_redeem_bondprocess_redeem_bond - transfer_checkedtransfer_checked CPICPI call.

(c) In process_collect_paymentprocess_collect_payment - transfer_checkedtransfer_checked CPICPI call.

(d) In process_start_issuanceprocess_start_issuance - update_rateupdate_rate CPICPI call.

(e) In process_create_purchase_orderprocess_create_purchase_order - transfer_checkedtransfer_checked CPICPI call.

Remediation

Ensure the unutilized or redundant code is removed from the above-stated instances.

© 2024 Otter Audits LLC. All Rights Reserved. 32 / 34

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 33 / 34

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that the others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 34 / 34

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SVB-ADV-00 | Overlapping of Multiple Issuances Simultaneously
	[8.75em][l]OS-SVB-ADV-01 | Failure to Validate Initialization Parameters
	[8.75em][l]OS-SVB-ADV-02 | Discriminator Check Bypass
	[8.75em][l]OS-SVB-ADV-03 | Bypassing Token Account Initialization
	[8.75em][l]OS-SVB-ADV-04 | Absence of Verification of Issuance Account Index
	[8.75em][l]OS-SVB-ADV-05 | Interest Rate Accumulation
	[8.75em][l]OS-SVB-ADV-06 | Lack of Timestamp and Bond Validation
	[8.75em][l]OS-SVB-ADV-07 | Mismatch In Expected Decimal Value Resulting In DOS
	[8.75em][l]OS-SVB-ADV-08 | Multiple Inconsistencies In Bond Redemption
	[8.75em][l]OS-SVB-ADV-09 | Excessively Long Price Feed Expiry Period

	General Findings
	[8.75em][l]OS-SVB-SUG-00 | Code Maturity
	[8.75em][l]OS-SVB-SUG-01 | Missing Validation Logic
	[8.75em][l]OS-SVB-SUG-02 | Additional Safety Checks
	[8.75em][l]OS-SVB-SUG-03 | Unutilized Code
	[8.75em][l]OS-SVB-SUG-04 | Redundant Code in CPI Calls

	Appendices
	Vulnerability Rating Scale
	Procedure

