
Exponent Finance
Security Assessment

October 16th, 2024 — Prepared by OtterSec

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 3

Overview 3

Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6

OS-EXF-ADV-00 | Lack of SY Program Verification 8

OS-EXF-ADV-01 | SY Balance Fee Accounting Error 9

OS-EXF-ADV-02 | Escrow Balance Mismanagement 10

OS-EXF-ADV-03 | Utilization of Stale State Values 11

OS-EXF-ADV-04 | Locked Escrow Funds 13

OS-EXF-ADV-05 | Mathematical Errors from Incorrect Operations 14

OS-EXF-ADV-06 | Improper Reward Distribution 15

OS-EXF-ADV-07 | Inconsistent Handling of Interest Rate Adjustments 16

OS-EXF-ADV-08 | Improper Authorization Login in Farming Instructions 18

OS-EXF-ADV-09 | Faulty Reallocation of Market Size 19

OS-EXF-ADV-10 | Missing Share Index Update 20

OS-EXF-ADV-11 | Unutilized Accumulated Funds 21

OS-EXF-ADV-12 | Incorrect Flooring Conversion 22

General Findings 23

OS-EXF-SUG-00 | Faulty Post-Fee Rate Validation 25

OS-EXF-SUG-01 | Missing Validation Logic 27

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 38

Exponent Finance Audit

TABLE OF CONTENTS

OS-EXF-SUG-02 | Code Optimization 28

OS-EXF-SUG-03 | Efficient Memory Reallocation 29

OS-EXF-SUG-04 | Code Refactoring 30

OS-EXF-SUG-05 | Code Maturity 32

OS-EXF-SUG-06 | Code Redundancy 34

OS-EXF-SUG-07 | Unutilized Code 35

OS-EXF-SUG-08 | Code Clarity 36

Appendices

Vulnerability Rating Scale 37

Procedure 38

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 38

01 — Executive Summary

Overview

Exponent Finance engaged OtterSec to assess the exponent-coreexponent-core program. This assessment was con-

ducted between August 24th and October 9th, 2024. For more information on our auditing methodology,

refer to Appendix B.

Key Findings

We produced 22 findings throughout this audit engagement.

In particular, we identified a critical vulnerability where the interest collection instructions fail to verify that

the provided SY programmatches the expected program in the vault (OS-EXF-ADV-00) and another issue

concerning the lack of proper access control checks in the instructions for adding a farm and sending farm

tokens (OS-EXF-ADV-08). We also highlighted several mathematical inconsistencies arising from the

use of incorrect operations (OS-EXF-ADV-05), as well as several cases of improper reward distribution

due to the utilization of outdated values (OS-EXF-ADV-03).

Furthermore, when selling principal tokens, the treasury fee is transferred from the escrow to the treasury,

but the corresponding amount is not deducted from the market’s balance of SY tokens (OS-EXF-ADV-01).

Additionally, the floor operation returns an incorrect value (OS-EXF-ADV-12).

We also made recommendations to ensure adherence to coding best practices (OS-EXF-SUG-05)

and suggested removing unused and redundant code within the system for increased readability (OS-

EXF-SUG-06). We further advised incorporating additional checks within the codebase for improved

robustness and security (OS-EXF-SUG-01) and modifying the codebase for enhanced functionality,

efficiency, and maintainability (OS-EXF-SUG-04).

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 38

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/exponent-finance/exponent-

core. This audit was performed against commit a9d3a6b.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

exponent-core

A protocol that allows users to strategically trade tokenized future yields

by splitting assets into Principal and Yield Tokens for flexible yield man-

agement. It also incorporates farm emissions to incentivize user par-

ticipation and enhance liquidity.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 38

https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core/commit/a9d3a6bffd5cbad0753cd3b540a0d7f42b76211e

03 — Findings

Overall, we reported 22 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 1

HIGHHIGH 5

MEDIUMMEDIUM 7

LOWLOW 0

INFOINFO 9

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 38

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-EXF-ADV-00
CRITICALCRITICAL RESOLVEDRESOLVED

CollectTreasuryInterestCollectTreasuryInterest and

CollectInterestCollectInterest do not verify that the

sy_programsy_program provided matches the expected

program in the vault.

OS-EXF-ADV-01
HIGHHIGH RESOLVEDRESOLVED

In the TradePtTradePt instruction, when selling PTPT ,
the treasury fee is transferred from the escrow

to the treasury, but the corresponding amount

is not deducted from the market’s SYSY balance.

OS-EXF-ADV-02
HIGHHIGH RESOLVEDRESOLVED

market.lp_escrow_amountmarket.lp_escrow_amount is not

decremented during LP token transfers in

do_transfer_lp_outdo_transfer_lp_out , resulting in potential

mismanagement of escrow balances and

inaccurate accounting.

OS-EXF-ADV-03
HIGHHIGH RESOLVEDRESOLVED

The failure to update changes, such as emission

indexes and last_seen_stagedlast_seen_staged , results in the
utilization of outdated values before retrieving

reward amounts.

OS-EXF-ADV-04
HIGHHIGH RESOLVEDRESOLVED

buy_ytbuy_yt lacks a critical do_deposit_sydo_deposit_sy CPICPI
call after do_repay_sydo_repay_sy , resulting in SYSY tokens

remaining locked in the token_sy_escrowtoken_sy_escrow
account.

OS-EXF-ADV-05
HIGHHIGH RESOLVEDRESOLVED

There are several mathematical inconsistencies

as a result of the utilization of incorrect opera-

tions.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 38

Exponent Finance Audit 04 — Vulnerabilities

OS-EXF-ADV-06
MEDIUMMEDIUM RESOLVEDRESOLVED

increase_share_indexesincrease_share_indexes and

update_emissions_from_position_stateupdate_emissions_from_position_state
incorrectly distribute rewards across the entire

LP supply rather than just for the LP tokens

deposited in active LP positions.

OS-EXF-ADV-07
MEDIUMMEDIUM RESOLVEDRESOLVED

In scenarios where the exchange rate de-

creases, withdraw_ytwithdraw_yt and mergemerge lack

safeguards against increasing the sy_for_ptsy_for_pt
amount, enabling attackers to withdraw large

amounts of SYSY .

OS-EXF-ADV-08
MEDIUMMEDIUM RESOLVEDRESOLVED

add_farmadd_farm and send_farm_tokensend_farm_token lack proper

access control checks, and the token_farmtoken_farm
account is assigned an incorrect authority.

OS-EXF-ADV-09
MEDIUMMEDIUM RESOLVEDRESOLVED

The AddMarketEmissionAddMarketEmission instruction reuses

market.cpi_accountsmarket.cpi_accounts to reallocate the

market size instead of using the provided

cpi_accountscpi_accounts from the input.

OS-EXF-ADV-10
MEDIUMMEDIUM RESOLVEDRESOLVED

modify_market_settingmodify_market_setting instruction

fails to update the share indexes with

increase_share_indexesincrease_share_indexes before ad-

justing the new_ratenew_rate for farm emissions,

resulting in inaccurate reward distribution.

OS-EXF-ADV-11
MEDIUMMEDIUM RESOLVEDRESOLVED

In the vault account, treasurytreasury and

treasury_emissiontreasury_emission , which are accumulated
in increase_lambo_fundincrease_lambo_fund , are neither re-

trieved nor utilized anywhere.

OS-EXF-ADV-12
MEDIUMMEDIUM RESOLVEDRESOLVED

floor_u128floor_u128 in precise_numberprecise_number does not

correctly apply the floor operation, returning

incorrect values.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 38

Exponent Finance Audit 04 — Vulnerabilities

Lack of SY Program Verification CRITICALCRITICAL OS-EXF-ADV-00

Description

In the CollectInterestCollectInterest and CollectTreasuryInterestCollectTreasuryInterest (shown below) instructions, the sy_programsy_program
is not verified against the vault. The sy_programsy_program is intended to manage the SYSY tokens and should

ideally be verified to ensure that it is the correct and authorized program for handling these tokens. Thus,

it may be possible to replace the sy_programsy_program with a malicious program to potentially redirect the SYSY
tokens.

>_ vault/admin/treasury/collect_treasury_interest.rs rust

#[derive(Accounts)]
pub struct CollectTreasuryInterest<'info> {

[...]
/// CHECK: constrained by vault
pub sy_program: UncheckedAccount<'info>,

}

Specifically, it may affect YTYT holders, resulting in discrepancies when they try to collect the interest

they earned from their YTYT holdings, and administrators when they try to withdraw SYSY tokens that have

accumulated as interest in a vault.

Remediation

Ensure that the sy_programsy_program is appropriately validated in CollectInterestCollectInterest and

CollectTreasuryInterestCollectTreasuryInterest .

Patch

Resolved in PR#520.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 38

https://github.com/exponent-finance/exponent-core/pull/520

Exponent Finance Audit 04 — Vulnerabilities

SY Balance Fee Accounting Error HIGHHIGH OS-EXF-ADV-01

Description

In the TradePtTradePt instruction in exponent_coreexponent_core , when the user sells PTPT (Principal Tokens), they receive

SYSY tokens (Stake Yield tokens) in return. A portion of these SYSY tokens is taken as a fee from the escrow

account and sent to the treasury. However, while the code transfers this fee to the treasury, it does not

properly decrement the corresponding amount from the market’s internal accounting of sy_balancesy_balance .

This could lead to discrepancies between the market’s internal accounting of sy_balancesy_balance and the actual

amount of SYSY balance the market has.

Remediation

Ensure that whenever an amount is deducted from the escrow in TradePtTradePt , it is also subtracted from the

market’s internal sy_balancesy_balance .

Patch

Fixed in PR#711.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 38

https://github.com/exponent-finance/exponent-core/pull/711

Exponent Finance Audit 04 — Vulnerabilities

Escrow Balance Mismanagement HIGHHIGH OS-EXF-ADV-02

Description

In the WithdrawLpWithdrawLp instruction in exponent_coreexponent_core , do_transfer_lp_outdo_transfer_lp_out transfers LP tokens

from the market’s escrow account to the user’s destination account (token_lp_dsttoken_lp_dst). However, the
market.lp_escrow_amountmarket.lp_escrow_amount , which represents the total amount of LP (Liquidity Provider) tokens held
in escrow by the market, is not decremented after the withdrawal.

If market.lp_escrow_amountmarket.lp_escrow_amount is not updated (decremented) after the transfer, the protocol will continue

to consider the withdrawn tokens as part of the market’s liquidity pool. This will lead to improper distribution

of emissions from the SY program and farms.

>_ exponent_core/src/instructions/market_two/withdraw_lp.rs rust

/// Transfer LP tokens from escrow to dst
fn do_transfer_lp_out(&self, amount: u64) -> Result<()> {

#[allow(deprecated)]
token_2022::transfer(

self.transfer_lp_out_context()
.with_signer(&[&self.market.signer_seeds()]),

amount,
)

}

Remediation

Ensure that market.lp_escrow_amountmarket.lp_escrow_amount is decremented by the amount of LP tokens withdrawn.

Patch

Fixed in PR#710.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 38

https://github.com/exponent-finance/exponent-core/pull/710

Exponent Finance Audit 04 — Vulnerabilities

Utilization of Stale State Values HIGHHIGH OS-EXF-ADV-03

Description

The vulnerability in claim_farm_emissionsclaim_farm_emissions and market_collect_emissionmarket_collect_emission instructions stems

from the failure to update the emission indexes, which results in the retrieval of stale reward values. Both

the claim_farm_emissionsclaim_farm_emissions and market_collect_emissionmarket_collect_emission instructions rely on emission indexes

to calculate the rewards for liquidity providers (LPs). Since the emission indexes are not updated, the

system still utilizes the stale emission index values, which results in inaccurate reward claims.

>_ marginfi_standard/src/instructions/read/get_position.rs rust

pub fn to_position_state(&self) -> PositionState {
PositionState {

owner: self.position.owner,
sy_balance: self.position.amount,
emissions: self

.position

.reward_indexes

.iter()

.map(|reward| Emission {
mint: reward.mint,
amount_claimable: reward.claimable_rewards_amount,
last_seen_emission_index: reward.last_seen_share_index,

})
.collect(),

}
}

Similarly, the get_positionget_position instruction within marginfi_standardmarginfi_standard (shown above) fails to refresh

emissions before returning the PositionStatePositionState . This results in inconsistencies in emission updates and
affects subsequent actions such as deposit_lpdeposit_lp and withdraw_lpwithdraw_lp in exponent_coreexponent_core .

>_ market_two/market_collect_emission.rs rust

pub fn handler(ctx: Context<MarketCollectEmission>, emission_index: u16) -> Result<()> {
let emission_index = emission_index as usize;
assert_eq!(

ctx.accounts.market.emissions.trackers[emission_index].token_escrow,
ctx.accounts.token_emission_escrow.key()

);
let amount = ctx.accounts.lp_position.emissions.trackers[emission_index].staged;
ctx.accounts.lp_position.emissions.trackers[emission_index].staged = 0;
[...]

}

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 38

Exponent Finance Audit 04 — Vulnerabilities

Also, in the MarketCollectEmissionMarketCollectEmission instruction, the last_seen_stagedlast_seen_staged field in

market.emissions.trackersmarket.emissions.trackers is not reduced by the claimed amount. The last_seen_stagedlast_seen_staged value

keeps track of the total rewards that were last seen in the emissions tracker. By not reducing this value

after emission claims, the tracker continues to reflect an incorrect balance, essentially representing more

tokens than are actually available.

Remediation

Ensure that the emission index is updated to reflect the most current market state in the

claim_farm_emissionsclaim_farm_emissions , market_collect_emissionmarket_collect_emission , and get_positionget_position instructions. Additionally,

the last_seen_stagedlast_seen_staged field in market.emissions.trackersmarket.emissions.trackers should be reduced by the claimed

amount. This ensures that the tracker reflects the actual rewards remaining for future claims and prevents

the over-allocation of rewards.

Patch

The issue concerning the missing index updates was acknowledged.

The issue in get_positionget_position was resolved in PR#612 and PR#643.

The issue regarding the failure to update the last_seen_stagedlast_seen_staged field in market.emissions.trackersmarket.emissions.trackers
was resolved in PR#530.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 38

https://github.com/exponent-finance/exponent-core/pull/612
https://github.com/exponent-finance/exponent-core/pull/643
https://github.com/exponent-finance/exponent-core/pull/530

Exponent Finance Audit 04 — Vulnerabilities

Locked Escrow Funds HIGHHIGH OS-EXF-ADV-04

Description

The buy_ytbuy_yt instruction is missing a critical step: the SYSY (Synthetic Yield) tokens that are borrowed are

not properly deposited back into the pool, rendering the funds locked in token_sy_escrowtoken_sy_escrow . In
buy_ytbuy_yt , once the PT (Principal Tokens) are sold, the SYSY tokens obtained are supposed to be utilized to

repay the borrowed amount. This repayment is done through do_repay_sydo_repay_sy , which transfers SYSY from

the trader’s account back to the token_sy_escrowtoken_sy_escrow account.

This escrow temporarily holds SYSY tokens. However, since the do_deposit_sydo_deposit_sy step is missing, the SYSY

tokens remain in the token_sy_escrowtoken_sy_escrow account. This implies that they are not properly returned to the

liquidity pool, where they should be available for future operations.

Remediation

Add a do_deposit_sydo_deposit_sy CPICPI call after the do_repay_sydo_repay_sy call. This will properly transfer the repaid

SYSY tokens from token_sy_escrowtoken_sy_escrow back into the SYSY liquidity pool, ensuring that the borrowed funds

are fully repaid and available for future utilization in the market.

Patch

Resolved in PR#558.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 38

https://github.com/exponent-finance/exponent-core/pull/558

Exponent Finance Audit 04 — Vulnerabilities

Mathematical Errors from Incorrect Operations HIGHHIGH OS-EXF-ADV-05

Description

In MarketFinancials::trade_ptMarketFinancials::trade_pt , in the sy_feesy_fee calculation, asset_feeasset_fee is currently multiplied by

the sy_exchange_ratesy_exchange_rate . This multiplication will incorrectly scale up the fee, resulting in an incorrect
fee calculation. Instead, it should be divided by the exchange rate, which converts the asset fee into SYSY
terms, as it effectively scales down the fee according to how many base assets are equivalent to one SYSY .
Additionally, in sy_magnitude_from_net_trader_assetsy_magnitude_from_net_trader_asset (shown below), ceilceil should be applied to

sy_magnitudesy_magnitude when net_trader_assetnet_trader_asset is negative, as flooring will round down, potentially resulting

in the allocation of fewer SYSY than intended.

>_ exponent_core/src/state/market_two.rs rust

fn sy_magnitude_from_net_trader_asset(net_trader_asset: DNum, sy_exchange_rate: Number) -> u64 {
let asset_magnitude: u64 = net_trader_asset.value.floor().abs().try_into().unwrap();
let sy_magnitude = Number::from_natural_u64(asset_magnitude) / sy_exchange_rate;
let sy_magnitude = sy_magnitude.floor_u64();

sy_magnitude
}

Additionally, in the dec_numdec_num library, MAX_U96MAX_U96 is incorrect. The maximum value for an unsigned integer

with nn bits is 2n − 1. For 96 bits, the maximum value is 296 − 1. Utilizing 1 << 961 << 96 gives 296, which is one

more than this maximum value. This results in an off-by-one error in representing the maximum value for

96-bit unsigned integers.

Remediation

Ensure that the sy_feesy_fee is calculated by dividing the asset_feeasset_fee by the sy_exchange_ratesy_exchange_rate to convert

the fee from the base asset to SYSY units correctly, and that ceilceil is applied to sy_magnitudesy_magnitude when

net_trader_assetnet_trader_asset is negative.

Patch

1. The issue in MarketFinancials::trade_ptMarketFinancials::trade_pt was resolved in PR#559.

2. The issue in sy_magnitude_from_net_trader_assetsy_magnitude_from_net_trader_asset was resolved in PR#560.

3. The issue in dec_numdec_num was resolved in PR#553.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 38

https://github.com/exponent-finance/exponent-core/pull/559
https://github.com/exponent-finance/exponent-core/pull/560
https://github.com/exponent-finance/exponent-core/pull/553

Exponent Finance Audit 04 — Vulnerabilities

Improper Reward Distribution MEDIUMMEDIUM OS-EXF-ADV-06

Description

LpFarm::increase_share_indexesLpFarm::increase_share_indexes calculates how much each emission’s share index should be

updated based on the passage of time and the total LP (Liquidity Provider) supply. It applies this update

to all emissions on the farm. However, it utilizes the total lp_supplylp_supply when adjusting the share indexes,

while rewards are meant to be distributed based on specific LP positions rather than the total supply.

>_ exponent_core/src/state/market_two.rs rust

pub fn update_emissions_from_position_state(
&mut self,
position_state: &PositionState,
lp_supply: u64,

) {
for (index, current_position) in position_state.emissions.iter().enumerate() {

let difference =
current_position.amount_claimable - self.emissions.trackers[index].last_seen_staged;

let amount_to_increase = Number::from_natural_u64(difference)
.checked_div(&Number::from_natural_u64(lp_supply))
.unwrap();

self.emissions.trackers[index].lp_share_index += amount_to_increase;
self.emissions.trackers[index].last_seen_staged = current_position.amount_claimable;

}
}

Similarly, MarketTwo::update_emissions_from_position_stateMarketTwo::update_emissions_from_position_state (shown above) updates the LP

share index for emissions based on the amount_claimableamount_claimable for each position in position_stateposition_state ,
using the total lp_supplylp_supply to calculate the increase amount. Thus, both functions assume that rewards

should be distributed across the entire LP supply rather than being collected solely for LP tokens deposited

in lp_positionslp_positions .

Remediation

Modify the reward distribution logic to utilize the actual number of LP tokens deposited in active positions

rather than the total LP token supply.

Patch

Resolved in PR#613.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 38

https://github.com/exponent-finance/exponent-core/pull/613

Exponent Finance Audit 04 — Vulnerabilities

Inconsistent Handling of Interest Rate Adjustments MEDIUMMEDIUM OS-EXF-ADV-07

Description

The vulnerability concerns a flaw in the way vaultvault handles interest adjustments when the exchange rate

fluctuates, specifically in emergency scenarios. When the exchange rate increases, the SYSY amount that

was previously tied to PTPT (Principal Tokens) moves to an uncollected_syuncollected_sy pool. This is a mechanism to

account for the fact that more SYSY is now required for the same amount of PTPT . In the opposite scenario,
when the exchange rate decreases (negative interest case), there is protection to prevent interest amounts

from being reduced.

While protections exist to prevent a decrease in the SYSY amount when the exchange rate falls, there are

no corresponding checks to prevent the sy_for_ptsy_for_pt amount from increasing.

>_ vault/stage_yield.rs rust

pub fn handle_stage_yt_yield(
vault: &mut Vault,
vault_yield_position: &mut YieldTokenPosition,
user_yield_position: &mut YieldTokenPosition,
sy_state: &SyState,
now: u32,

) -> Result<()> {
// update vault indexees from SY state
// and stage any yield to the vault's robot account
update_vault_yield(vault, vault_yield_position, now, sy_state);

// TODO - consider removing this check, since deeper in the stack we check for this
require!(

!vault.is_in_emergency_mode(),
ExponentCoreError::VaultInEmergencyMode

);

yield_position_earn(vault, user_yield_position, sy_state);

// Set SY for PT
vault.set_sy_for_pt();

Ok(())
}

Normally, update_vault_yieldupdate_vault_yield , which manages these calculations, is not allowed to execute in

emergency mode as shown above. Emergency mode is designed to prevent unauthorized or incorrect

adjustments during critical conditions. However, in withdraw_ytwithdraw_yt and mergemerge , the emergency status

of the vault is not verified as in update_vault_yieldupdate_vault_yield . Consequently, an attacker may exploit this by
withdrawing more sy_amountsy_amount than they should be able to, based on the current state of the vault.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 38

Exponent Finance Audit 04 — Vulnerabilities

Remediation

Ensure that withdraw_ytwithdraw_yt and mergemerge verify the emergency status of the vault before proceeding with

operations that affect SYSY amounts.

Patch

Resolved in PR#536 and PR#548.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 38

https://github.com/exponent-finance/exponent-core/pull/536
https://github.com/exponent-finance/exponent-core/pull/548

Exponent Finance Audit 04 — Vulnerabilities

Improper Authorization Login in Farming Instructions MEDIUMMEDIUM OS-EXF-ADV-08

Description

The add_farmadd_farm and send_farm_tokenssend_farm_tokens instructions in exponent_core::market_twoexponent_core::market_two lack sufficient

access control checks. Without proper access controls, any user may call these functions, potentially

manipulating the farm emissions data, including adding or modifying farms in the emissions array. Without

restricted access, any user may repeatedly call the add_farmadd_farm instruction to add new entries to the

farm_emissionsfarm_emissions array, bloating the array and unnecessarily consuming storage resources.

>_ market_two/admin/send_farm_tokens.rs rust

#[derive(Accounts)]
pub struct SendFarmTokens<'info> {

[...]
#[account(

mut,
associated_token::mint = mint,
associated_token::authority = market.token_sy_escrow,

)]
pub token_farm: InterfaceAccount<'info, TokenAccount>,
pub token_program: Interface<'info, TokenInterface>,

}

Furthermore, in the SendFarmTokensSendFarmTokens structure in send_farm_tokenssend_farm_tokens , the authority of the token_farmtoken_farm
account is incorrectly set to market.token_sy_escrowmarket.token_sy_escrow instead of marketmarket itself. This would lead to

following instruction calls getting reverted.

Remediation

Enforce proper access control to ensure that only authorized users are able to invoke add_farmadd_farm and

send_farm_tokenssend_farm_tokens . Additionally, set the authority to marketmarket for the token_farmtoken_farm account.

Patch

Resolved in PR#526 and PR#527.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 38

https://github.com/exponent-finance/exponent-core/pull/526
https://github.com/exponent-finance/exponent-core/pull/527

Exponent Finance Audit 04 — Vulnerabilities

Faulty Reallocation of Market Size MEDIUMMEDIUM OS-EXF-ADV-09

Description

The vulnerability concerns the incorrect handling of CPI (Cross-Program Invocation) accounts during the

reallocation of the MarketTwoMarketTwo account in the AddMarketEmissionAddMarketEmission instruction. Specifically, the issue

is that the market.cpi_accountsmarket.cpi_accounts are utilized for reallocation instead of the cpi_accountscpi_accounts provided

as input to the handler function.

>_ market_two/admin/add_market_emission.rs rust

pub fn update_market(&mut self, cpi_accounts: CpiAccounts) {
self.market.cpi_accounts = cpi_accounts;

}

This implies that when the account is resized, it relies on the existing cpi_accountscpi_accounts in the marketmarket
account. Ideally, the reallocrealloc should be based on the cpi_accountscpi_accounts passed in through the handler

function input, not on the current state of the marketmarket account. If the market.cpi_accountsmarket.cpi_accounts are

outdated or incorrect, reallocating the account based on this data may result in an incorrect size calculation.

Thus, there will be insufficient space for the new MarketEmissionMarketEmission data.

Remediation

Ensure that the reallocrealloc operation accurately reflects the size requirements based on the input

cpi_accountscpi_accounts provided in the handler function.

Patch

Resolved in PR#529.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 38

https://github.com/exponent-finance/exponent-core/pull/529

Exponent Finance Audit 04 — Vulnerabilities

Missing Share Index Update MEDIUMMEDIUM OS-EXF-ADV-10

Description

In the market_two::modify_market_settingmarket_two::modify_market_setting instruction, the farm_emissionfarm_emission rates are updated

without properly adjusting the relevant share indexes. Share indexes track how rewards are distributed to

participants. These indexes ensure that when the emission rate changes, users still receive the correct

amount of rewards based on their share of the total pool and the time they have participated. Here, the

ChangeFarmRateChangeFarmRate action is updating the emission rate (new_ratenew_rate) for a farm, but it is not properly

adjusting the share indexes beforehand, which may result in incorrect reward calculations.

Failing to update the share indexes before modifying the farm emission rate can lead to unfair and incorrect

reward distributions. Participants who were in the farm before the rate change may not receive their full

rewards. Since the share indexes were not updated, rewards earned before the rate change are lost or

miscalculated, resulting in incorrect reward amounts for those users. This inconsistency arises because

the system has two different emission rates without properly accounting for the transition between them.

Remediation

Ensure the program calls increase_share_indexesincrease_share_indexes to update the share indexes based on the current

emission rate and timestamp.

Patch

Resolved in PR#528.

© 2024 Otter Audits LLC. All Rights Reserved. 20 / 38

https://github.com/exponent-finance/exponent-core/pull/528

Exponent Finance Audit 04 — Vulnerabilities

Unutilized Accumulated Funds MEDIUMMEDIUM OS-EXF-ADV-11

Description

increase_lambo_fundincrease_lambo_fund in the vault updates the treasury_sytreasury_sy and treasury_emissiontreasury_emission fields within

the vault account. However, in the current implementation, treasury_sytreasury_sy and treasury_emissiontreasury_emission
are never retrieved, accessed, or utilized in any subsequent logic after they are updated in

increase_lambo_fundincrease_lambo_fund . Consequently, the surplus emission in earned_emission_surplusesearned_emission_surpluses and

the surplus amount of SYSY are never actually utilized in the treasury, resulting in unnecessary wastage of

funds.

>_ exponent_core/src/state/vault.rs rust

pub fn increase_lambo_fund(&mut self, earn_all_result: &EarnAllResult) {
self.treasury_sy = self

.treasury_sy

.checked_add(earn_all_result.earned_sy_surplus)

.unwrap();
for (index, earned_emission) in earn_all_result.earned_emission_surpluses.iter().enumerate()
{

self.emissions[index].treasury_emission = self.emissions[index]
.treasury_emission
.checked_add(*earned_emission)
.unwrap();

}
}

Remediation

Ensure that the vault logic is updated so that the accumulated amounts in treasury_sytreasury_sy and

treasury_emissiontreasury_emission are correctly utilized.

Patch

Resolved in PR#521.

© 2024 Otter Audits LLC. All Rights Reserved. 21 / 38

https://github.com/exponent-finance/exponent-core/pull/521

Exponent Finance Audit 04 — Vulnerabilities

Incorrect Flooring Conversion MEDIUMMEDIUM OS-EXF-ADV-12

Description

floor_u128floor_u128 is supposed to convert a high-precision number (represented as a NumberNumber in the form

of a PreciseNumberPreciseNumber , which utilizes U256U256 for its internal representation) into a u128u128 by rounding

down (flooring) to the nearest integer. However, in this case, the function fails to correctly apply the floor

operation.

>_ libraries/precise_number/src/lib.rs rust

pub fn floor_u128(&self) -> u128 {
self.to_pn().to_imprecise().unwrap()

}

In the test case given below, Number::from_ratio(19, 10)Number::from_ratio(19, 10) creates a NumberNumber equivalent to 1.9. The

expected behavior of floor_u128floor_u128 is to return 1 (the largest integer not greater than 1.9). However, since

to_impreciseto_imprecise does not correctly floor the number but instead performs a direct truncation without

regard to the fractional part, the test fails.

>_ test.rs rust

#[test]
fn test_asdf() {

assert_eq!(Number::from_ratio(19, 10).floor_u128(), 1);
}

Remediation

Ensure that the number is explicitly floored before converting it to a u128u128 .

Patch

Resolved in PR#519.

© 2024 Otter Audits LLC. All Rights Reserved. 22 / 38

https://github.com/exponent-finance/exponent-core/pull/519

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-EXF-SUG-00

tradetrade does not verify whether the exchange rate, after accounting for

fees, remains greater than one. This may allow unfavorable trades where

the user ends up receiving less value than the amount of PTPT traded.

OS-EXF-SUG-01
There are several instances where proper validation is not done, resulting

in potential security issues.

OS-EXF-SUG-02

MintSyMintSy allows any pre-existing token account to be accepted as

token_base_account_authoritytoken_base_account_authority , which is inefficient and increases

complexity.

OS-EXF-SUG-03
AddPrincipleAdminAddPrincipleAdmin reallocates 64 bytes for adding an admin, which is

more than the 32 bytes needed for a public key, potentially wasting space.

OS-EXF-SUG-04
Recommendation for modifying the codebase for improved functionality,

efficiency, and maintainability.

OS-EXF-SUG-05
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

OS-EXF-SUG-06
The codebase contains multiple instances of unutilized and redundant code

that should be removed for better maintainability and clarity.

OS-EXF-SUG-07
The codebase contains multiple cases of unnecessary code that should be

removed for better maintainability and clarity.

OS-EXF-SUG-08
The overall code may be streamlined further to reduce complexity, eliminate

redundancy, and enhance readability.

© 2024 Otter Audits LLC. All Rights Reserved. 23 / 38

Exponent Finance Audit 05 — General Findings

© 2024 Otter Audits LLC. All Rights Reserved. 24 / 38

Exponent Finance Audit 05 — General Findings

Faulty Post-Fee Rate Validation OS-EXF-SUG-00

Description

tradetrade currently checks that the exchange rate is greater than one with the assertion

assert!(er > N::one()assert!(er > N::one() . The calculation of the net_trader_assetnet_trader_asset considers the impact of the

transaction fee. If the fee is not appropriately considered, the post-fee exchange rate may be less than

one, resulting in an incorrect valuation. tradetrade computes pre_fee_net_trader_assetpre_fee_net_trader_asset utilizing the

exchange rate but does not validate if the resulting value (after applying the fee) maintains the expected

valuation relationship.

>_ solana/libraries/tcurve/src/math.rs rust

pub fn trade<N: Num>(
[...]

) -> TradeResult<N> {
[...]
let er = exchange_rate(l_p, rate_scalar, rate_anchor);
assert!(er > N::one(), "Asset cannot be worth less than PT");
// negate the trader PT to get the net change in asset for the trader
let pre_fee_net_trader_asset = -net_trader_pt / er;
let fee = asset_fee(pre_fee_net_trader_asset, fee_rate);

// subtract the fee from the net trader asset
// if net_trader_asset is negative, the user is buying PT and selling asset and the "fee"

value is positive in order to increase the magnitude of net_trader_asset (increasing
the amount of asset the user must pay)

↪→

↪→

// if net_trader_asset is positive, the user is selling PT and buying asset and the "fee"
value is positive in order to decrease the magnitude of net_trader_asset↪→

let net_trader_asset = pre_fee_net_trader_asset - fee;
[...]

}

The function does not revalidate whether the post-fee exchange rate, which determines the final net asset

value after accounting for fees, still satisfies the condition that the asset value is greater than PTPT . This
lack of revalidation can lead to scenarios where traders receive less value than expected, especially if the

fee is high or if there are discrepancies between the actual and expected exchange rates after the fee

deduction.

Remediation

Move the er > 1er > 1 check to exchange_rateexchange_rate to ensure that the exchange rate calculation itself enforces

the condition that the asset is worth more than PTPT .

© 2024 Otter Audits LLC. All Rights Reserved. 25 / 38

Exponent Finance Audit 05 — General Findings

Patch

The issue was acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 26 / 38

Exponent Finance Audit 05 — General Findings

Missing Validation Logic OS-EXF-SUG-01

Description

1. Currently, mint checks are not properly enforced for token accounts. Instead, the system relies on

these accounts to fail during token transfers if the mint is incorrect. This is a reactive approach

that may result in runtime errors. Additionally, verify mint_symint_sy in the initialize_vaultinitialize_vault
instruction, and the mint and owner of the token_emission_escrowtoken_emission_escrow associated token account in

MarketCollectEmissionMarketCollectEmission .

2. In MarketTwo::add_farmMarketTwo::add_farm , there is no check to see if the token_minttoken_mint already exists in the

market’s list of farms. This may result in the addition of duplicate farms for the same token_minttoken_mint ,
especially because get_farm_emission_indexget_farm_emission_index does not properly handle duplicates.

3. It is advisable to verify the vaultvault account against market.vaultmarket.vault in both BuyYtBuyYt and SellYtSellYt
instructions to ensure that the correct vault is utilized.

4. Add a check in the exponent_core::AddEmissionexponent_core::AddEmission instruction that verifies the mint of the

robot_token_accountrobot_token_account , as it may be modified later, which would result in a Denial of Service (DoS)
attack if the wrong input is provided. This check will ensure that the token account provided by the

user matches the expected token type.

Remediation

1. Explicitly check the mints for all token accounts.

2. Verify whether a farm with the same token_minttoken_mint already exists.

3. Implement the above check.

4. Add the missing validations mentioned above.

Patch

1. The Issue in MarketCollectEmissionMarketCollectEmission was resolved in PR#550 and the other two issues were

acknowledged.

2. Issue #2 was resolved in PR#552.

3. Issue #3 was resolved in PR#551.

4. Issue #4 was resolved in PR#514.

© 2024 Otter Audits LLC. All Rights Reserved. 27 / 38

https://github.com/exponent-finance/exponent-core/pull/550
https://github.com/exponent-finance/exponent-core/pull/552
https://github.com/exponent-finance/exponent-core/pull/551
https://github.com/exponent-finance/exponent-core/pull/615

Exponent Finance Audit 05 — General Findings

Code Optimization OS-EXF-SUG-02

Description

1. The has_onehas_one constraint ensures that the specified field of an account matches the public key of a

given account, verifying that the account is correctly linked to the expected account. This check may

be utilized in token_sy_escrowtoken_sy_escrow and token_sy_treasurytoken_sy_treasury accounts in the CollectInterestCollectInterest
instruction to simplify the constraints.

>_ exponent_core/src/instructions/vault/collect_interest.rs rust

pub struct CollectInterest<'info> {
[...]
#[account(

mut,
address = vault.escrow_sy,

)]
pub token_sy_escrow: InterfaceAccount<'info, TokenAccount>,

#[account(
mut,
address = vault.treasury_sy_token_account,

)]
pub token_sy_treasury: InterfaceAccount<'info, TokenAccount>,
[...]

}

2. In its current implementation, the add_emissionadd_emission and add_market_emissionadd_market_emission instructions update

the entire CpiAccountsCpiAccounts each time, which is an unoptimized method and increases the risk of

potentially unexpected errors.

Remediation

1. Incorporate the has_onehas_one check in the token_sy_escrowtoken_sy_escrow and token_sy_treasurytoken_sy_treasury accounts

in the CollectInterestCollectInterest instruction.

2. Push a new CpiInterfaceContextCpiInterfaceContext instead of updating the entire CpiAccountsCpiAccounts each time for

better efficiency and reduced risk of errors.

Patch

1. Issue #1 resolved in PR#523.

2. Issue #2 has been acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 28 / 38

https://github.com/exponent-finance/exponent-core/pull/523

Exponent Finance Audit 05 — General Findings

Efficient Memory Reallocation OS-EXF-SUG-03

Description

In the context of AddPrincipleAdminAddPrincipleAdmin , each time a new admin is added, the account is reallocated with

an additional 64 bytes. However, a single public key is only 32 bytes in size. This implies that half of

the reallocated space (32 bytes) is unutilized for every addition. Over multiple additions, this results in a

significant waste of memory.

>_ exponent_admin/src/lib.rs rust

#[derive(Accounts)]
pub struct AddPrincipleAdmin<'info> {

#[account(
mut,
realloc = admin_account.try_to_vec().unwrap().len() + 64,
realloc::payer = fee_payer,
realloc::zero = false

)]
pub admin_account: Account<'info, Admin>,
/// CHECK:
pub new_admin: UncheckedAccount<'info>,
#[account(mut)]
pub fee_payer: Signer<'info>,
pub uber_admin: Signer<'info>,
pub system_program: Program<'info, System>,

}

Additionally, when an admin is removed via RemovePrincipleAdminRemovePrincipleAdmin , the public key is removed from
the list of administrators. This results in unutilized space in the account because the allocated memory

does not shrink automatically. The account still occupies the same amount of space, even though some

of it is no longer utilized.

Remediation

Calculate the difference between the current lamports and the lamports required for the new size after

reallocating, and adjust the account’s lamports accordingly. This process will be more efficient than

reallocating each time a public key is added or removed.

Patch

Resolved in PR#511.

© 2024 Otter Audits LLC. All Rights Reserved. 29 / 38

https://github.com/exponent-finance/exponent-core/pull/511

Exponent Finance Audit 05 — General Findings

Code Refactoring OS-EXF-SUG-04

Description

1. In the current implementation, it is impossible to update vault.cpi_accountsvault.cpi_accounts without adding

new emissions in the ModifyVaultSettingModifyVaultSetting instruction, which is not a feasible option. The

cpi_accountscpi_accounts field in the VaultVault structure is crucial and may result in a denial-of-service attack

in the case of incorrect inputs during initialization.

2. Store all Program Derived Address (PDA) seed strings as constants rather than directly utilizing them

to improve code maintainability and reduce the risk of errors during future edits.

3. Within exponent_coreexponent_core , rename the owner field to depositordepositor in the DepositYtEventDepositYtEvent structure,

as the depositor may not always be the actual owner of the user_yield_positionuser_yield_position .

4. Round up the sy_insy_in value in the ifif block and the pt_inpt_in value in the elseelse block in

tcurve::add_liquiditytcurve::add_liquidity so as to slightly favor the protocol by ensuring that liquidity providers

(LPs) contribute a bit more than the minimum required.

5. The new_lp_supplynew_lp_supply field in the DepositLiquidityEventDepositLiquidityEvent may not immediately reflect the

correct updated supply of LP tokens after minting new tokens. This is because the LP token mint

account (mint_lpmint_lp) may not have been updated with the newly minted amount by the time the

event is emitted.

6. The address_lookup_tableaddress_lookup_table parameter in the MarketTwoInitMarketTwoInit instruction may be redundant

compared to the address_lookup_tableaddress_lookup_table passed in the context (the account defined in the

MarketTwoInitMarketTwoInit structure). If these two values are not aligned, it will result in inconsistencies

during transaction execution.

Remediation

1. Update the ModifyVaultSettingModifyVaultSetting instruction by adding an option that allows admins to update

vault.cpi_accountsvault.cpi_accounts directly.

2. Utilize constants to store the PDA seeds.

3. Rename the owner field to depositordepositor .

4. Round up to favor the protocol.

5. Add the newly minted LP tokens to the existing supply in the event log, ensuring new_lp_supplynew_lp_supply
accurately reflects the total LP token supply after the minting process.

6. Remove the redundant address_lookup_tableaddress_lookup_table parameter in the MarketTwoInitMarketTwoInit instruction.

© 2024 Otter Audits LLC. All Rights Reserved. 30 / 38

Exponent Finance Audit 05 — General Findings

Patch

1. Issue #1 resolved in PR#617.

2. Issue #2 resolved in PR#616.

3. Issue #3 resolved in PR#618.

4. Issue #4 resolved in PR#862.

5. Issue #5 resolved in PR#863.

6. Issue #6 resolved in PR#863.

© 2024 Otter Audits LLC. All Rights Reserved. 31 / 38

https://github.com/exponent-finance/exponent-core/pull/617
https://github.com/exponent-finance/exponent-core/pull/616
https://github.com/exponent-finance/exponent-core/pull/618
https://github.com/exponent-finance/exponent-core/pull/862
https://github.com/exponent-finance/exponent-core/pull/863
https://github.com/exponent-finance/exponent-core/pull/863

Exponent Finance Audit 05 — General Findings

Code Maturity OS-EXF-SUG-05

Description

1. Whitelist the sy_programsy_program in the initialize_vaultinitialize_vault instruction with the public keys of

marginfi-standardmarginfi-standard and kamino-lend-standardkamino-lend-standard as a security enhancement to restrict the

programs that may interact with the vault.

2. To ensure proper reallocation in the WithdrawYtWithdrawYt instruction, utilize reallocrealloc so that WithdrawYtWithdrawYt
is equipped to handle dynamic changes in the size of user_yield_positionuser_yield_position .

3. Utilize dedicated functions such as inc_pt_balanceinc_pt_balance , dec_pt_balancedec_pt_balance , inc_sy_balanceinc_sy_balance ,

and dec_sy_balancedec_sy_balance in order to enhance code clarity and maintainability in

MarketFinancials::trade_ptMarketFinancials::trade_pt .

4. In YieldTokenPosition::earn_emissionsYieldTokenPosition::earn_emissions , it would be appropriate to set e.last_seen_indexe.last_seen_index
to emission.final_indexemission.final_index instead of emission.last_seen_indexemission.last_seen_index for better accuracy.

>_ exponent_core/src/state/yield_token_position.rs rust

fn earn_emissions(&mut self, vault: &Vault) {
// TODO - consider negative rates
let sy_balance = self.total_sy_balance(vault);
for (index, emission) in vault.emissions.iter().enumerate() {

let e = &mut self.emissions[index];
let earned_emission =

calc_share_value(e.last_seen_index, emission.final_index, sy_balance);
e.inc_staged(earned_emission);
e.last_seen_index = emission.last_seen_index;

}
}

5. The comment on the authority_klend_accountauthority_klend_account field in the SyMetaSyMeta structure incorrectly states

”Authority over the Marginfi account” instead of ”Authority over the Kamino account”. Update the

comment to reflect the correct account.

Remediation

Implement the above-mentioned suggestions.

© 2024 Otter Audits LLC. All Rights Reserved. 32 / 38

Exponent Finance Audit 05 — General Findings

Patch

1. Issue #1 has been acknowledged.

2. Issue #2 resolved in PR#522.

3. Issue #3 resolved in PR#554.

4. Issue #4 resolved in PR#620.

5. Issue #5 resolved in PR#517.

© 2024 Otter Audits LLC. All Rights Reserved. 33 / 38

https://github.com/exponent-finance/exponent-core/pull/522
https://github.com/exponent-finance/exponent-core/pull/554
https://github.com/exponent-finance/exponent-core/pull/620
https://github.com/exponent-finance/exponent-core/pull/517

Exponent Finance Audit 05 — General Findings

Code Redundancy OS-EXF-SUG-06

Description

1. collect_emission_from_position_statecollect_emission_from_position_state and approx_pt_for_exact_syapprox_pt_for_exact_sy in market_twomarket_two
are not utilized and may be removed.

2. In the MarketEmission::SIZEMarketEmission::SIZE calculation, the size allocated for last_seen_global_indexlast_seen_global_index is

unnecessary.

3. Within deposit_yt::handle_deposit_ytdeposit_yt::handle_deposit_yt in exponent_coreexponent_core , it is unnecessary to check if the

vault is active for calling vault.set_sy_for_ptvault.set_sy_for_pt since this is already checked in validatevalidate .

>_ exponent_core/src/instructions/vault/deposit_yt.rs rust

pub fn handle_deposit_yt(
vault: &mut Vault,
vault_yield_position: &mut YieldTokenPosition,
user_yield_position: &mut YieldTokenPosition,
sy_state: &SyState,
now: u32,
amount: u64,

) -> Result<()> {
[...]
if vault.is_active(now) {

vault.set_sy_for_pt();
}
Ok(())

}

Remediation

Remove the redundant and unutilized code instances highlighted above.

Patch

1. Issue #1 resolved in PR#555.

2. Issue #2 resolved in PR#556.

3. Issue #3 resolved in PR#619.

© 2024 Otter Audits LLC. All Rights Reserved. 34 / 38

https://github.com/exponent-finance/exponent-core/pull/555
https://github.com/exponent-finance/exponent-core/pull/556
https://github.com/exponent-finance/exponent-core/pull/619

Exponent Finance Audit 05 — General Findings

Unutilized Code OS-EXF-SUG-07

Description

1. The fee_payerfee_payer account in the SendFarmTokensSendFarmTokens instruction appears unused and may be removed.

2. The remaining_stagedremaining_staged field in the MarketCollectEmissionEventMarketCollectEmissionEvent structure is always set to

zero since all staged emissions are cleared. Thus, it does not serve any purpose and should be

removed.

Remediation

Remove the above instances of unutilized code.

Patch

1. Issue #1 resolved in PR#864.

2. Issue #2 resolved in PR#866.

© 2024 Otter Audits LLC. All Rights Reserved. 35 / 38

https://github.com/exponent-finance/exponent-core/pull/864
https://github.com/exponent-finance/exponent-core/pull/866

Exponent Finance Audit 05 — General Findings

Code Clarity OS-EXF-SUG-08

Description

1. The DepositLiquidityDepositLiquidity instruction structure is misspelled as DepositLiquidityDepositLiquidity . Ensure to
modify the name to reflect the correct spelling.

2. The ownerowner field in DepositLpEventDepositLpEvent may not be an appropriate name, as the ownerowner may not

actually be the owner of the LpPositionLpPosition passed to the instruction. Consider a more suitable

variable name.

3. Update the comment in the TradePtTradePt instruction (“net_trader_sy and net_trader_pt must have the

same sign”), as currently, it is incorrect.

Remediation

Implement the above-mentioned changes.

Patch

1. Issue #1 resolved in PR#867.

2. Issue #2 was acknowledged.

3. Issue #3 resolved in PR#830.

© 2024 Otter Audits LLC. All Rights Reserved. 36 / 38

https://github.com/exponent-finance/exponent-core/pull/867
https://github.com/exponent-finance/exponent-core/pull/830

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 37 / 38

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 38 / 38

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-EXF-ADV-00 | Lack of SY Program Verification
	[8.75em][l]OS-EXF-ADV-01 | SY Balance Fee Accounting Error
	[8.75em][l]OS-EXF-ADV-02 | Escrow Balance Mismanagement
	[8.75em][l]OS-EXF-ADV-03 | Utilization of Stale State Values
	[8.75em][l]OS-EXF-ADV-04 | Locked Escrow Funds
	[8.75em][l]OS-EXF-ADV-05 | Mathematical Errors from Incorrect Operations
	[8.75em][l]OS-EXF-ADV-06 | Improper Reward Distribution
	[8.75em][l]OS-EXF-ADV-07 | Inconsistent Handling of Interest Rate Adjustments
	[8.75em][l]OS-EXF-ADV-08 | Improper Authorization Login in Farming Instructions
	[8.75em][l]OS-EXF-ADV-09 | Faulty Reallocation of Market Size
	[8.75em][l]OS-EXF-ADV-10 | Missing Share Index Update
	[8.75em][l]OS-EXF-ADV-11 | Unutilized Accumulated Funds
	[8.75em][l]OS-EXF-ADV-12 | Incorrect Flooring Conversion

	General Findings
	[8.75em][l]OS-EXF-SUG-00 | Faulty Post-Fee Rate Validation
	[8.75em][l]OS-EXF-SUG-01 | Missing Validation Logic
	[8.75em][l]OS-EXF-SUG-02 | Code Optimization
	[8.75em][l]OS-EXF-SUG-03 | Efficient Memory Reallocation
	[8.75em][l]OS-EXF-SUG-04 | Code Refactoring
	[8.75em][l]OS-EXF-SUG-05 | Code Maturity
	[8.75em][l]OS-EXF-SUG-06 | Code Redundancy
	[8.75em][l]OS-EXF-SUG-07 | Unutilized Code
	[8.75em][l]OS-EXF-SUG-08 | Code Clarity

	Appendices
	Vulnerability Rating Scale
	Procedure

