
Kamino Lend Integration
Security Assessment

October 16th, 2024 — Prepared by OtterSec

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-KLI-ADV-00 | Faulty Distribution of Emissions 7

OS-KLI-ADV-01 | Failure to Store User State 8

OS-KLI-ADV-02 | Potential Reward Index Mismatch 9

OS-KLI-ADV-03 | Token Program Mismatch 11

OS-KLI-ADV-04 | Exchange Rate Calculation Discrepancy 12

General Findings 13

OS-KLI-SUG-00 | Missing Validation Logic 14

OS-KLI-SUG-01 | Code Maturity 15

OS-KLI-SUG-02 | Code Redundancy 16

Appendices

Vulnerability Rating Scale 17

Procedure 18

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 18

01 — Executive Summary

Overview

Exponent Finance engaged OtterSec to assess the kamino-lend-standardkamino-lend-standard program. This assessment

was conducted between August 24th and October 9th, 2024. For more information on our auditing

methodology, refer to Appendix B.

Key Findings

We produced 8 findings throughout this audit engagement.

In particular, we identified a high-risk vulnerability, where the reward index update is based only on staked

SYSY tokens, while unstaked SYSY tokens should also accrue rewards for the treasury, resulting in inaccurate

reward allocation (OS-KLI-ADV-00). Additionally, we highlighted the possibility of passing an incorrect

reward index, resulting in execution failure (OS-KLI-ADV-02), and an inconsistency in the exchange rate

calculations (OS-KLI-ADV-04).

Furthermore, while withdrawing the obligation collateral, the same token program is utilized for liquidity and

collateral transactions, which may result in failures if the token program types differ (OS-KLI-ADV-03).

We also made recommendations to ensure adherence to coding best practices (OS-KLI-SUG-01) and

suggested the removal of unutilized and redundant code within the system for increased readability

(OS-KLI-SUG-02). We further advised incorporating additional checks within the codebase for improved

robustness and security (OS-KLI-SUG-00).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 18

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/exponent-finance/exponent-

core. This audit was performed against commit e9f5248.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

kamino-lend-

standard

It allows users to mint a receipt of a position in a DeFi protocol, which

can then be utilized as SY in the Exponent core program.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 18

https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core/commit/e9f5248136f39e2293142a392fdeaa5461bcf6f1

03 — Findings

Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 1

MEDIUMMEDIUM 1

LOWLOW 3

INFOINFO 3

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 18

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-KLI-ADV-00
HIGHHIGH RESOLVEDRESOLVED

The reward index update is based only on

staked SYSY tokens, while unstaked SYSY
tokens should also accrue rewards for

the treasury, resulting in inaccurate reward

allocation.

OS-KLI-ADV-01
MEDIUMMEDIUM RESOLVEDRESOLVED

The obligation_farmobligation_farm is not stored in

SyMetaSyMeta , enabling the transfer of own-

ership of a different obligation_farmobligation_farm
to the Kamino lending authority, allow-

ing an attacker to abuse the system during

deposit and withdrawal operations.

OS-KLI-ADV-02
LOWLOW RESOLVEDRESOLVED

process_reward_emissionsprocess_reward_emissions may

pass an incorrect reward index

to harvest_rewardharvest_reward if some

emissions have not been added to

meta.emissionsmeta.emissions , potentially resulting

in execution failure.

OS-KLI-ADV-03
LOWLOW RESOLVEDRESOLVED

withdraw_obligation_collateral_ctxwithdraw_obligation_collateral_ctx
utilizes the same token program for both

liquidity and collateral transactions, which

may result in failures if the token program

types differ.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 18

Kamino Lend Integration Audit 04 — Vulnerabilities

OS-KLI-ADV-04
LOWLOW RESOLVEDRESOLVED

There is an inconsistency in the

exchange rate calculations in

SyEmissions::to_sy_stateSyEmissions::to_sy_state ,

which utilizes market price data, and

collateral_exchange_ratecollateral_exchange_rate in

Kamino Lending, which relies on total

liquidity.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 18

Kamino Lend Integration Audit 04 — Vulnerabilities

Faulty Distribution of Emissions HIGHHIGH OS-KLI-ADV-00

Description

The issue arises from a misalignment in how rewards (emissions) are allocated to staked SYSY tokens and

the treasury’s share for unstaked SYSY tokens. In the EmissionEmission structure, the indexindex field is utilized to

track how much reward (emissions) each staked SYSY token holder is entitled to. It is updated based on

new emissions that are credited to the system. Currently, the index is calculated only based on the staked

SYSY tokens, but it is also utilized to calculate the rewards for unstaked SYSY tokens (which belong to the

treasury). This is problematic because the total emissions should be distributed based on the total supply

of SYSY tokens, not just the staked portion.

>_ kamino_lend_standard/src/state/meta.rs rust

pub fn increase_from_token_credit(&mut self, sy_supply: u64, token_amount: u64) {
let index_delta = Number::from_ratio(token_amount.into(), sy_supply.into());

self.index += index_delta;
self.last_seen_total_accrued_emissions += token_amount as u128;

}

This may result in the incorrect allocation of rewards to both staked SYSY token holders and the treasury.

Remediation

Ensure the index is calculated as the reward amount for the entire sy_mintsy_mint supply, and not just for the

staked SYSY tokens.

Patch

Resolved in PR#570.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 18

https://github.com/exponent-finance/exponent-core/pull/570

Kamino Lend Integration Audit 04 — Vulnerabilities

Failure to Store User State MEDIUMMEDIUM OS-KLI-ADV-01

Description

In the init_syinit_sy instruction in kamino_lend_standardkamino_lend_standard , the obligation_farmobligation_farm , which represents the

user’s state in Kamino Farms for earning rewards and is utilized to verify the user_stateuser_state in depositdeposit
and withdrawwithdraw instructions, is not stored in the SyMetaSyMeta structure. As a result, it allows for a potential

exploit where an attacker may transfer ownership of an obligation_farmobligation_farm to the Kamino lending

(klendklend) authority, thus enabling the attacker to utilize a different user_stateuser_state to interact with the farm.

Without storing the obligation_farmobligation_farm in SyMetaSyMeta , there is no direct reference to verify that the correct

user state is used while interacting with the depositdeposit and withdrawwithdraw instructions, as they rely on

correctly verifying the user’s state to ensure that the correct user is interacting with the system and that

they may claim or modify rewards or assets tied to their state.

Remediation

Store the obligation_farmobligation_farm in SyMetaSyMeta to ensure that every interaction with the system verifies the

correct farm state, such that only the legitimate owner may modify or interact with the farm state.

Patch

Resolved in PR#610.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 18

https://github.com/exponent-finance/exponent-core/pull/610

Kamino Lend Integration Audit 04 — Vulnerabilities

Potential Reward Index Mismatch LOWLOW OS-KLI-ADV-02

Description

In utils::process_reward_emissionsutils::process_reward_emissions , there is a potential mismatch between the enumerated index
utilized during reward harvesting and the actual index of the reward in the meta.emissionsmeta.emissions data structure.
process_reward_emissionsprocess_reward_emissions iterates over escrow accounts and performs reward harvesting utilizing

the Kamino Farms program via cross-program invocation (CPI) call to harvest_rewardharvest_reward . During each
iteration, the function passes an index parameter (calculated from the loop’s position) to

harvest_rewardharvest_reward , representing the specific reward being collected for the user.

>_ kamino_lend_standard/src/utils.rs rust

pub fn process_reward_emissions<'info>(
escrow_accounts: &Vec<Pubkey>,
remaining_accounts: &[AccountInfo<'info>],
farm_state: AccountInfo<'info>,
farm_vaults_authority: AccountInfo<'info>,
global_config: AccountInfo<'info>,
owner: AccountInfo<'info>,
meta: &Meta,
scope_prices: AccountInfo<'info>,
user_state: AccountInfo<'info>,
kamino_farms_program: AccountInfo<'info>,

) -> Result<()> {
for (index, escrow_account) in escrow_accounts.into_iter().enumerate() {

let i = 5 * index;
let target_token_account = remaining_accounts[i].key;
[...]

// using index should not be an issue as filtered out optional values can not be between
2 Some values↪→

harvest_reward(
harvest_reward_cpi_context.with_signer(&[&meta.kamino_account_authority_seeds()]),
index as u64,

)?;
}
Ok(())

}

However, if certain rewards have not been added to meta.emissionsmeta.emissions for a user, the index passed

to harvest_rewardharvest_reward may not correspond to the actual reward position in the Kamino Farms program.

This desynchronization between the index passed and the internal reward data on the Kamino side may

result in an error during execution, failing the instruction as the function is trying to harvest a reward at an

incorrect index.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 18

Kamino Lend Integration Audit 04 — Vulnerabilities

Remediation

Ensure that the system is in a fully synchronized state before allowing any deposit or withdrawal op-

erations. Halt all deposit or withdrawal activities until all the expected rewards are fully populated in

meta.emissionsmeta.emissions , or pass the reward index specific to the collected rewards instead of using the

enumerated index.

Patch

The development team acknowledged the issue and assured that they would take the necessary

precautions while adding emissions.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 18

Kamino Lend Integration Audit 04 — Vulnerabilities

Token ProgramMismatch LOWLOW OS-KLI-ADV-03

Description

In kamino_lend_standarad::RedeemSykamino_lend_standarad::RedeemSy , withdraw_obligation_collateral_ctxwithdraw_obligation_collateral_ctx utilizes the

token_program_basetoken_program_base account for both the liquidity_token_programliquidity_token_program and the

collateral_token_programcollateral_token_program . This may result in problems when the two token programs (liquidity and
collateral) are different. Specifically, suppose one token program is the standard SPL Token program, and

the other is the token-2022 program. In that case, it may result in failures during execution as utilizing the

same token_program_basetoken_program_base for both operations will result in a mismatch.

>_ kamino_lend_standard/src/instructions/redeem_sy.rs rust

fn withdraw_obligation_collateral_ctx(
&self,

) -> CpiContext<'_, '_, '_, 'info,
WithdrawObligationCollateralAndRedeemReserveCollateral<'info>>↪→

{
let accs = WithdrawObligationCollateralAndRedeemReserveCollateral {

lending_market: self.lending_market.to_account_info(),
collateral_token_program: self.token_program_base.to_account_info(),
obligation: self.kamino_obligation.to_account_info(),
lending_market_authority: self.lending_market_authority.to_account_info(),
owner: self.authority_klend_account.to_account_info(),
liquidity_token_program: self.token_program_base.to_account_info(),
[...]

};
CpiContext::new(self.kamino_lend_program.to_account_info(), accs)

}

Remediation

Distinguish between the token programs utilized for liquidity and collateral. Instead of utilizing a single

token_program_basetoken_program_base , the function should explicitly specify the appropriate token programs for each
operation.

Patch

Resolved in PR#611.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 18

https://github.com/exponent-finance/exponent-core/pull/611

Kamino Lend Integration Audit 04 — Vulnerabilities

Exchange Rate Calculation Discrepancy LOWLOW OS-KLI-ADV-04

Description

There is an inconsistency in the calculation of exchange_rateexchange_rate in SyEmissions::to_sy_stateSyEmissions::to_sy_state
and in collateral_exchange_ratecollateral_exchange_rate in Kamino Lending. SyEmissions::to_sy_stateSyEmissions::to_sy_state calcu-

lates the exchange rate from the market_price_sfmarket_price_sf field of the liquidity structure within the reserve,

whereas collateral_exchange_ratecollateral_exchange_rate bases the exchange rate on the total supply of liquidity (the

total_supplytotal_supply of liquidity tokens). As a result, the exchange rate in SyEmissionsSyEmissions overlooks the role

of total liquidity and collateral.

Remediation

Ensure consistency in calculating the exchange_rateexchange_rate by aligning both calculations.

Patch

Resolved in PR#607.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 18

https://github.com/exponent-finance/exponent-core/pull/607

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-KLI-SUG-00
Additional safety checks may be incorporated within the codebase to make

it more robust and secure.

OS-KLI-SUG-01
Suggestions regarding codebase inconsistencies and ensuring adherence

to coding best practices.

OS-KLI-SUG-02
The codebase contains multiple cases of unutilized and redundant code

that should be removed for better maintainability and clarity.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 18

Kamino Lend Integration Audit 05 — General Findings

Missing Validation Logic OS-KLI-SUG-00

Description

1. In the existing AddEmissionAddEmission instruction in kamino_lendingkamino_lending , implement a check to ensure

that the emission_token_accountemission_token_account is associated with the correct mint. Additionally, validate the

emission_mintemission_mint against reserve_farm_state.reward_infos[index].token.mintreserve_farm_state.reward_infos[index].token.mint .

2. In the InitSyInitSy instruction within kamino_lendingkamino_lending , ensure the freeze and metadata authorities

are explicitly configured in a manner similar to that used in marginfi_standardmarginfi_standard .

3. In kamino_lend_standard::add_emissionkamino_lend_standard::add_emission , there is no check to verify if the owner of
emission_token_accountemission_token_account is equal to meta.authority_klend_accountmeta.authority_klend_account , resulting in the

possibility of funds getting locked due to an incorrect token account input. Verify that the owner of

emission_token_accountemission_token_account is equal to meta.authority_klend_accountmeta.authority_klend_account .

>_ kamino_lend_standard/src/instructions/add_emission.rs rust

#[derive(Accounts)]
pub struct AddEmission<'info> {

pub signer: Signer<'info>,
[...]
#[account(token::token_program = emission_token_program, token::mint = emission_mint)]
pub emission_token_account: InterfaceAccount<'info, TokenAccount>,
[...]

}

4. Add seed checks for token_base_account_authoritytoken_base_account_authority in the mint_stmint_st and redeem_syredeem_sy
instructions.

Remediation

Add the missing validations mentioned above.

Patch

1. Issue #1 was resolved in 4c66c56

2. Issue #2 was resolved in PR#614.

3. Issue #2 was resolved in PR#516.

4. Issue #4 was acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 18

added: https://github.com/exponent-finance/exponent-core/commit/4c66c56dcbd86f4a6243dc6347c036a099beffe5
https://github.com/exponent-finance/exponent-core/pull/614
https://github.com/exponent-finance/exponent-core/pull/516

Kamino Lend Integration Audit 05 — General Findings

Code Maturity OS-KLI-SUG-01

Description

1. The comment on the authority_klend_accountauthority_klend_account field in the SyMetaSyMeta structure incorrectly states

”Authority over the Marginfi account” instead of ”Authority over the Kamino account”. Update the

comment to reflect the correct account.

2. init_obligation_farms_for_reserveinit_obligation_farms_for_reserve in kamino_lend_cpikamino_lend_cpi utilizes invoke_signedinvoke_signed even

though the owner account does not need to be signer.

>_ kamino_lend_cpi/src/lib.rs rust

pub fn init_obligation_farms_for_reserve<'info>(
ctx: CpiContext<'_, '_, '_, 'info, InitObligationFarmsForReserve<'info>>,
mode: u8,

) -> Result<()> {
[...]
invoke_signed(

&instruction,
&ctx.accounts.to_account_infos().as_slice(),
ctx.signer_seeds,

)?;

Ok(())
}

3. In the collect_treasury_emissioncollect_treasury_emission instruction, it would be more efficient to utilize

Emission::collectEmission::collect to handle the increment of total_claimed_emissionstotal_claimed_emissions .

Remediation

1. Implement the above-mentioned suggestions.

2. Utilize invokeinvoke instead of invoke_signedinvoke_signed in init_obligation_farms_for_reserveinit_obligation_farms_for_reserve .

3. Utilize Emission::collectEmission::collect to handle the increment of total_claimed_emissionstotal_claimed_emissions .

Patch

1. Issue #1 was resolved in PR#517.

2. Issue #2 was resolved in PR#515.

3. Issue #2 was resolved in PR#615.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 18

https://github.com/exponent-finance/exponent-core/pull/517
https://github.com/exponent-finance/exponent-core/pull/515
https://github.com/exponent-finance/exponent-core/pull/615

Kamino Lend Integration Audit 05 — General Findings

Code Redundancy OS-KLI-SUG-02

Description

1. BASE_SEED_USER_METADATABASE_SEED_USER_METADATA and USER_METADATA_SIZEUSER_METADATA_SIZE constants in kamino_lend_cpikamino_lend_cpi are

not required.

2. The kamino_reservekamino_reserve and emission_token_programemission_token_program accounts in the

kamino_lend_standard::add_emissionkamino_lend_standard::add_emission instruction seem unnecessary and may be removed.

3. deposit_obligation_collateraldeposit_obligation_collateral , refresh_reserverefresh_reserve , refresh_obligationrefresh_obligation ,

refresh_obligation_farms_for_reserverefresh_obligation_farms_for_reserve , and
Obligation::find_collateral_in_depositsObligation::find_collateral_in_deposits are unutilized and may be removed.

Remediation

Remove the redundant and unutilized code instances highlighted above.

Patch

1. Issue #1 was resolved in PR#518.

2. Issue #2 and #3 were acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 18

https://github.com/exponent-finance/exponent-core/pull/518

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 18

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-KLI-ADV-00 | Faulty Distribution of Emissions
	[8.75em][l]OS-KLI-ADV-01 | Failure to Store User State
	[8.75em][l]OS-KLI-ADV-02 | Potential Reward Index Mismatch
	[8.75em][l]OS-KLI-ADV-03 | Token Program Mismatch
	[8.75em][l]OS-KLI-ADV-04 | Exchange Rate Calculation Discrepancy

	General Findings
	[8.75em][l]OS-KLI-SUG-00 | Missing Validation Logic
	[8.75em][l]OS-KLI-SUG-01 | Code Maturity
	[8.75em][l]OS-KLI-SUG-02 | Code Redundancy

	Appendices
	Vulnerability Rating Scale
	Procedure

