
Exponent Jito Restaking
Security Assessment

December 20th, 2024 — Prepared by OtterSec

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-EXF-ADV-00 | Invariant Fragility 6

OS-EXF-ADV-01 | Inconsistency in Admin Update Mechanism 7

General Findings 8

OS-EXF-SUG-00 | Code Maturity 9

OS-EXF-SUG-01 | Missing Validation Logic 10

Appendices

Vulnerability Rating Scale 11

Procedure 12

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 12

01 — Executive Summary

Overview

Exponent Finance engaged OtterSec to assess the jito-restaking-integrationjito-restaking-integration program. This

assessment was conducted between December 18th and December 20th, 2024. For more information

on our auditing methodology, refer to Appendix B.

Key Findings

We produced 4 findings throughout this audit engagement.

In particular, we have identified a critical vulnerability in the fragility of the invariant check linking the

token-vrt-escrow balance to the mint-sy supply, allowing a single SY token burn to result in DoS of the

protocol (OS-EXF-ADV-00).

Lastly, in the SY initialization instruction, the exponent admin is designated as the update authority for the

metadata. As a result, if the admin changes in the future, all previously created SY metadata instances will

continue to have the previous admin as their update authority (OS-EXF-ADV-01).

We also made recommendations to ensure adherence to coding best practices (OS-EXF-SUG-00)

and advised incorporating additional checks within the codebase for improved robustness and security

(OS-EXF-SUG-01).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 12

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/exponent-finance/exponent-

core/tree/fix-kysol-market-calc. This audit was performed against commit 6a6581c.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

jito-restaking-

integration

The audit focused on the integration of SY programs, the interface for

retrieving the SPL stake pool exchange rate, and the jito-restaking-cpi,

which includes the state for the Jito restaking program and its associated

helper functions.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 12

https://github.com/exponent-finance/exponent-core/tree/fix-kysol-market-calc
https://github.com/exponent-finance/exponent-core/tree/fix-kysol-market-calc
https://github.com/exponent-finance/exponent-core/commit/6a6581ce75aa4fe935d186a1f5263ecd6747fec9

03 — Findings

Overall, we reported 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 0

MEDIUMMEDIUM 1

LOWLOW 1

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 12

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-EXF-ADV-00
MEDIUMMEDIUM RESOLVEDRESOLVED

The invariant check linking

token_vrt_escrowtoken_vrt_escrow balance to mint_symint_sy
supply is fragile, allowing a single SYSY token

burn to result in failure, exposing the protocol

to potential denial-of-service attacks.

OS-EXF-ADV-01
LOWLOW RESOLVEDRESOLVED

The InitSyInitSy instruction sets a static update

authority for metadata tied to the initial admin,

resulting in a vulnerability where updates to SYSY
metadata remain under the control of the pre-

vious admin even after administrative changes.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 12

Exponent Jito Restaking Audit 04 — Vulnerabilities

Invariant Fragility MEDIUMMEDIUM OS-EXF-ADV-00

Description

In the MintSyMintSy and RedeemSyRedeemSy instructions, the invariantinvariant is utilized to validate that the amount of

base tokens in the token_vrt_escrowtoken_vrt_escrow account equals the supply of synthetic yield (SYSY) tokens in the
mint_symint_sy account to ensure that SYSY is backed by enough VRTVRT . However, in the case that even a single

SYSY token is burned, the mint_sy.supplymint_sy.supply decreases, and consequently, the check in the invariantinvariant
would fail. The invariant failure prevents any subsequent mints or redemptions, effectively creating a

denial of service scenario.

>_ jito_restaking_standard/src/instructions/redeem_sy.rs rust

fn invariant(&mut self) -> Result<()> {
invariant(&self.token_vrt_escrow.amount, &self.mint_sy.supply)

}

Remediation

Replace strict equality with an acceptable range or a margin of error.

Patch

Fixed in bbca170.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 12

https://github.com/exponent-finance/exponent-core/commit/bbca1703b0a0b5e395ff1e68a27af57c365defb5

Exponent Jito Restaking Audit 04 — Vulnerabilities

Inconsistency in Admin Update Mechanism LOWLOW OS-EXF-ADV-01

Description

In InitSyInitSy , the admin calling the instruction is set as the update_authorityupdate_authority for the newly created

metadata. This link is permanent for that specific SYSY instance. In the future, if the exponent admin

changes, all previously created SyMetaSyMeta instances will retain the old admin as their update_authorityupdate_authority .
Thus, older tokens remain tied to the old admin, resulting in disjoint governance and operational complexity.

This is particularly dangerous if the original admin is compromised, as it renders the protocol vulnerable

even if it is updated with a new admin.

Remediation

Ensure the migration of the update_authorityupdate_authority for all existing metadata accounts in the event of admin

transitions.

Patch

Acknowledged by the developers.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 12

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-EXF-SUG-00
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

OS-EXF-SUG-01
There are several instances where proper validation is not done, resulting

in potential security issues.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 12

Exponent Jito Restaking Audit 05 — General Findings

Code Maturity OS-EXF-SUG-00

Description

1. Utilize init_if_neededinit_if_needed for the token_vrt_escrowtoken_vrt_escrow account in the InitSyInitSy instruction to

ensure that the account is created only if it does not already exist.

>_ jito_restaking_standard/src/instructions/admin/init_sy.rs rust

pub struct InitSy<'info> {
[...]
#[account(

associated_token::authority = sy_meta,
associated_token::mint = vrt_mint,
associated_token::token_program = token_program,

)]
pub token_vrt_escrow: InterfaceAccount<'info, TokenAccount>,
[...]

2. Currently, Jito Restaking utilizes marginfi_standardmarginfi_standard from admin_stateadmin_state for all admin instructions.
Thus, those with administrative control over MarginFi automatically gain access to Jito Restaking’s

admin functions unnecessarily, rendering it difficult to establish granular controls specific to Jito

Restaking. Create a new set of principles specific to Jito Restaking to ensure that admin control over

Jito Restaking remains independent.

Remediation

Implement the above-mentioned suggestions.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 12

Exponent Jito Restaking Audit 05 — General Findings

Missing Validation Logic OS-EXF-SUG-01

Description

1. The absence of mint and authority validation for token accounts introduces risks, as these checks

ensure token accounts are correctly configured with the appropriate token mint and authority.

Explicitly validate the token mint and authority.

2. get_indexget_index does not validate whether the stake_poolstake_pool ’s state is up-to-date by checking the

last_update_epochlast_update_epoch . Exchange rate calculation relies on up-to date stake_poolstake_pool data. If the

stake_poolstake_pool is stale, the exchange rate returned by the function may be incorrect, resulting in

inaccurate index values. Include a staleness check on the StakePoolStakePool utilizing the

last_update_epochlast_update_epoch .

>_ jito_restaking_interface_spl_stake_pool/src/lib.rs rust

pub fn get_index(ctx: Context<GetIndex>) -> Result<JitoRestakingInterfaceReturnData> {
let stake_pool: StakePool =

borsh1::try_from_slice_unchecked(&ctx.accounts.stake_pool.data.borrow()).unwrap(;
let virtual_exchange_rate = Number::from_natural_u64(stake_pool.total_lamports)

.checked_div(&Number::from_natural_u64(stake_pool.pool_token_supply))

.unwrap();
Ok(JitoRestakingInterfaceReturnData {

index: virtual_exchange_rate,
})

}

Remediation

Incorporate the missing validations into the codebase.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 12

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 12

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 12

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-EXF-ADV-00 | Invariant Fragility
	[8.75em][l]OS-EXF-ADV-01 | Inconsistency in Admin Update Mechanism

	General Findings
	[8.75em][l]OS-EXF-SUG-00 | Code Maturity
	[8.75em][l]OS-EXF-SUG-01 | Missing Validation Logic

	Appendices
	Vulnerability Rating Scale
	Procedure

