
Marginfi Integration
Security Assessment

October 16th, 2024 — Prepared by OtterSec

Ajay Shankar Kunapareddy d1r3wolf@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:d1r3wolf@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-MGI-ADV-00 | Inconsistent Reward Allocation 6

OS-MGI-ADV-01 | Missing Padding Bytes 8

OS-MGI-ADV-02 | Incorrect Parameter Encoding 9

OS-MGI-ADV-03 | Discrepancy in Conversion of Synthetic Yield Tokens 10

General Findings 12

OS-MGI-SUG-00 | Non-deterministic Destination Account 13

OS-MGI-SUG-01 | Missing Validation Logic 15

OS-MGI-SUG-02 | Code Redundancy 17

Appendices

Vulnerability Rating Scale 18

Procedure 19

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 19

01 — Executive Summary

Overview

Exponent Finance engaged OtterSec to assess the marginfi-integrationmarginfi-integration program. This assessment

was conducted between August 24th and October 9th, 2024. For more information on our auditing

methodology, refer to Appendix B.

Key Findings

We produced 7 findings throughout this audit engagement.

In particular, we identified a vulnerability in the functionality for withdrawing from a lending account, where

the withdrawal parameter is incorrectly encoded as a single byte, while the Marginfi program expects a

two-byte parameter (OS-MGI-ADV-02). Furthermore, due to a potential discrepancy while redeeming

SY, the shares are inaccurately converted to the base asset, especially if the asset share value is updated

in the Marginfi withdraw instruction (OS-MGI-ADV-03). Additionally, the add emission instruction in

the Marginfi-standard program may designate any account as the escrow account, even if it is not an

associated token account (OS-MGI-SUG-00).

We also made recommendations to incorporate additional checks within the codebase for improved

robustness and security (OS-MGI-SUG-01) and suggested the removal of unutilized and redundant code

within the system for increased readability (OS-MGI-SUG-02).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 19

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/exponent-finance/exponent-

core. This audit was performed against commit a9d3a6b.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

marginfi-integration
It allows users to mint a receipt token that represents a deposit into the

Marginfi lending protocol.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core
https://github.com/exponent-finance/exponent-core/commit/a9d3a6bffd5cbad0753cd3b540a0d7f42b76211e

03 — Findings

Overall, we reported 7 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 2

MEDIUMMEDIUM 2

LOWLOW 0

INFOINFO 3

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 19

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-MGI-ADV-00
HIGHHIGH RESOLVEDRESOLVED

The reward distribution in the Marginfi

standard program is inconsistent because

it is based on SYSY amounts, while the vault

calculates emissions based on depreciat-

ing YTYT amounts. Also, the earned emis-

sions are calculated based on an outdated

YTYT balance, resulting in an inaccurate

lambo_fundlambo_fund calculation.

OS-MGI-ADV-01
HIGHHIGH RESOLVEDRESOLVED

The BalanceBalance structure in the Marginfi-

cpi library lacks necessary padding bytes

after the bank_pkbank_pk field, resulting in im-

proper memory alignment and deserial-

ization issues.

OS-MGI-ADV-02
MEDIUMMEDIUM RESOLVEDRESOLVED

The withdraw_allwithdraw_all parameter in

withdraw_from_lending_accountwithdraw_from_lending_account is

incorrectly encoded as a single byte,

whereas the Marginfi program expects a

two-byte Option<bool>Option<bool> .

OS-MGI-ADV-03
MEDIUMMEDIUM RESOLVEDRESOLVED

RedeemSyRedeemSy may inaccurately con-

vert shares to the base asset due

to a potential discrepancy between

the asset_share_valueasset_share_value and

mint_sy.supplymint_sy.supply , especially if the

asset share value is updated in the

Marginfi withdraw instruction.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 19

Marginfi Integration Audit 04 — Vulnerabilities

Inconsistent Reward Allocation HIGHHIGH OS-MGI-ADV-00

Description

There is a discrepancy between the utilization of SYSY and YTYT for reward distribution in the Marginfi-

standard program and the vault program. In the Marginfi-standard program, the reward distribution is

based on the amount of SYSY tokens held. This implies that the rewards are allocated proportionally to the

SYSY tokens held by the users. However, the emissions calculated in the vault are based on the amount

of YTYT tokens. The value of YTYT tokens depreciates as the SYSY exchange rate increases, resulting in a

decrease in their value. Consequently, emissions are only allocated for the sy_for_ptsy_for_pt amount, while

rewards for uncollected_syuncollected_sy are not distributed to any user.

Furthermore, as the SYSY exchange rate increases, the amount of YTYT tokens decreases. This depreciation

affects the emissions staging, resulting in a mismatch between the emissions staged and the actual

rewards users should receive, depending on the timing of emissions staging relative to exchange rate

changes.

>_ exponent_core/src/state/personal_yield_tracker.rs rust

fn calc_earned_emissions(&self, current_index: Number, lp_amount_user: u64) -> u64 {
let delta = current_index - self.last_seen_index;
let earned = delta * Number::from_natural_u64(lp_amount_user);
earned.floor_u64()

}
pub fn dec_staged(&mut self, amount: u64) {

self.staged = self
.staged
.checked_sub(amount)
.expect("insufficient staged balance");

}

Additionally, YieldTokenTracker::calc_earned_emissionsYieldTokenTracker::calc_earned_emissions (shown above) calculates the

lambo_fundlambo_fund using the current_indexcurrent_index and sy_balancesy_balance , derived from the yt_balanceyt_balance . Since

mergemerge does not account for YTYT tokens, these tokens remain in the yield position, resulting in an imbalance

where YTYT tokens continue to contribute to the lambo_fundlambo_fund calculation, even though they should have

been merged. Consequently, the emissions calculated based on these tokens will be inaccurate, resulting

in incorrect emissions.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 19

Marginfi Integration Audit 04 — Vulnerabilities

Remediation

Align the reward calculation methods between the vault and the Marginfi standard program. Specifically,

verify that both systems utilize a consistent metric for emission calculations. Also, ensure that YTYT tokens

are correctly accounted for and converted to their SYSY equivalent before calculating emissions. mergemerge
should handle YTYT tokens properly to prevent them from remaining in the yield position.

Patch

Resolved in PR#606.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 19

https://github.com/exponent-finance/exponent-core/pull/606

Marginfi Integration Audit 04 — Vulnerabilities

Missing Padding Bytes HIGHHIGH OS-MGI-ADV-01

Description

The issue pertains to the difference between the BalanceBalance structure in the Marginfi-CPI library within

marginfi_accountmarginfi_account and the original implementation of the BalanceBalance structure in the Marginfi library.

Specifically, the BalanceBalance structure in marginfi_accountmarginfi_account is missing padding bytes that are present in

the original structure.

>_ marginfi_cpi/src/state/marginfi_account.rs rust

pub struct Balance {
pub active: bool,
pub bank_pk: Pubkey,
pub asset_shares: WrappedI80F48,
pub liability_shares: WrappedI80F48,
pub emissions_outstanding: WrappedI80F48,
pub last_update: u64,
pub _padding: [u64; 1],

}

Specifically, it does not include the 7-byte _pad0_pad0 padding. This omission may result in improper

deserialization of data. Consequently, incorrect values may be fetched from the structure fields such as

asset_sharesasset_shares and asset_share_valueasset_share_value .

Remediation

Update the Marginfi-CPI BalanceBalance structure to include the missing padding bytes (_pad0_pad0). This will
ensure that both the original and copied structures have identical memory layouts.

Patch

Resolved in PR#569.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 19

https://github.com/exponent-finance/exponent-core/pull/569

Marginfi Integration Audit 04 — Vulnerabilities

Incorrect Parameter Encoding MEDIUMMEDIUM OS-MGI-ADV-02

Description

In marginfi_cpi::withdraw_from_lending_accountmarginfi_cpi::withdraw_from_lending_account , there is an incorrect encoding of the
withdraw_allwithdraw_all parameter in the instruction data. withdraw_from_lending_accountwithdraw_from_lending_account allows a user

to withdraw funds from their lending account. It constructs and sends a cross-program invocation (CPI)

to the Marginfi program with the appropriate parameters to perform this withdrawal.

>_ marginfi_cpi/src/lib.rs rust

pub fn withdraw_from_lending_account<'info>(
ctx: CpiContext<'_, '_, '_, 'info, LendingAccountWithdraw<'info>>,
amount: u64,
withdraw_all: bool,

) -> Result<()> {
[...]

}

One of these parameters, withdraw_allwithdraw_all , is a boolean flag indicating whether to withdraw the entire

balance from the lending account. However, the withdraw_allwithdraw_all field in the instruction is incorrectly

assigned as a single byte (1), while the Marginfi program expects the withdraw_allwithdraw_all parameter to

be an Option<bool>Option<bool> , which is a two-byte representation. Thus, the Marginfi program expects an

Option<bool>Option<bool> , but it receives a single byte.

Remediation

Encode the withdraw_allwithdraw_all parameter as Option<bool>Option<bool> .

Patch

Resolved in PR#508.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 19

https://github.com/exponent-finance/exponent-core/pull/508

Marginfi Integration Audit 04 — Vulnerabilities

Discrepancy in Conversion of Synthetic Yield Tokens MEDIUMMEDIUM OS-MGI-ADV-03

Description

In the RedeemSyRedeemSy instruction, there is a potential discrepancy in the conversion of synthetic yield (SYSY)
tokens (shares) to their corresponding base asset amounts. This discrepancy arises due to the way the

share-to-asset conversion rate may change after the SYSY tokens are burned but before the base assets

are redeemed. When a user initiates the RedeemSyRedeemSy instruction, the first step is to burn the specified

amount of SYSY tokens (amountamount). Between the time the SYSY tokens are burned and the base assets are

redeemed through the FakeRewardsFakeRewards program, the asset share value may be updated.

>_ fake_rewards_sy/src/instructions/redeem_sy.rs rust

pub fn handler(ctx: Context<RedeemSy>, amount: u64) -> Result<()> {
let bump = ctx.bumps.authority;

// Burn SY tokens
token_2022::burn(

CpiContext::new(
ctx.accounts.token_2022_program.to_account_info(),
anchor_spl::token_2022::Burn {

mint: ctx.accounts.mint_sy.to_account_info(),
from: ctx.accounts.sy_account.to_account_info(),
authority: ctx.accounts.owner.to_account_info(),

},
),
amount,

)?;

// Redeem shares from FakeRewards and transfer the base asset
let seeds: [&[u8]; 2] = [crate::GLOBAL_AUTH_SEED, &[bump]];
[...]

As a result, the calculation utilized to determine the number of base assets corresponding to the burned

SYSY tokens (sharesshares) may no longer be accurate, as the base amount to be redeemed is calculated via
the asset share value at the time the SYSY tokens are burned. If this value changes before the redemption

is complete, the resulting base amount will not accurately reflect the user’s intended redemption value.

Consequently, the invariant check that ensures that the total supply of SYSY tokens (mint_sy.supplymint_sy.supply)
and the corresponding base assets remain in balance will fail.

Remediation

Ensure that the burning of SYSY tokens and the redemption of base assets occur atomically within a single

transaction, minimizing the window during which the asset share value may change.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 19

Marginfi Integration Audit 04 — Vulnerabilities

Patch

Resolved in PR#569.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 19

https://github.com/exponent-finance/exponent-core/pull/569

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-MGI-SUG-00

In the AddEmissionAddEmission instruction, any account may be designated as the

escrow_accountescrow_account , without restrictions on it being an ATA.

OS-MGI-SUG-01
There are several instances where proper validation is not done, resulting

in potential security issues.

OS-MGI-SUG-02
The codebase contains multiple cases of unutilized and redundant code

that should be removed for better maintainability and clarity.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 19

Marginfi Integration Audit 05 — General Findings

Non-deterministic Destination Account OS-MGI-SUG-00

Description

The issue in LendingAccountWithdrawEmissionsLendingAccountWithdrawEmissions and AddEmissionAddEmission instructions pertains to how

emission accounts and destination accounts are managed and validated. In

LendingAccountWithdrawEmissionsLendingAccountWithdrawEmissions , the associated token account (ATA) of emission_mintemission_mint and

mfi_authoritymfi_authority is utilized for the destination_accountdestination_account . However, in AddEmissionAddEmission , any account
may be designated as the escrow_accountescrow_account for a new emission. The current implementation does not

enforce that the escrow_accountescrow_account must be an ATA of the emission_mintemission_mint and a specific authority

(such as mfi_authoritymfi_authority), nor does it enforce that it should be a Program Derived Address (PDA) with

a specific seed.

>_ marginfi_standard/src/instructions/admin/add_emission.rs rust

pub fn validate(&self) -> Result<()> {
self.admin_state

.principles

.marginfi_standard

.is_admin(self.signer.key)?;
Ok(())

}

pub fn add_emission(&mut self) {
self.meta.emissions.push(Emission {

mint: self.mint_emission.key(),
escrow_account: self.token_emission.key(),
index: Number::ZERO,
last_seen_total_accrued_emissions: 0,
total_claimed_emissions: 0,
treasury_emission: 0,
last_seen_index: Number::ZERO,

})
}

As a result, the generation of the destination_accountdestination_account is not deterministic currently. Furthermore,

there are no checks to prevent adding the same emission_mintemission_mint multiple times. Thus, the mint key may

be duplicated in SyMeta.emissionsSyMeta.emissions . This implies the same token mint may be added more than once,
resulting in redundant or conflicting emission records.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 19

Marginfi Integration Audit 05 — General Findings

Remediation

Ensure that when adding a new emission in AddEmissionAddEmission , the escrow_accountescrow_account is a PDA derived via

a specific seed that includes both the marginfi_bankmarginfi_bank and the emission_mintemission_mint . This will ensure that

the destination_accountdestination_account is uniquely and deterministically tied to each emission mint. Additionally,

before adding a new emission in AddEmissionAddEmission , check if emission_mintemission_mint already exists in

SyMeta.emissionsSyMeta.emissions .

Patch

This issue was acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 19

Marginfi Integration Audit 05 — General Findings

Missing Validation Logic OS-MGI-SUG-01

Description

1. MintSy::invariantMintSy::invariant is intended to ensure that the state of the program remains consistent

after certain operations. However, it does not ensure that the current supply of SYSY tokens (

mint_sy.supplymint_sy.supply) is below or equal to the maximum allowable supply (max_sy_supplymax_sy_supply). This
omission may result in minting more SYSY tokens than the cap allows.

>_ marginfi_standard/src/instructions/mint_sy.rs rust

fn invariant(&mut self) -> Result<()> {
self.mint_sy.reload()?;
invariant(

&self.marginfi_account.load()?.lending_account,
&self.marginfi_bank.key(),
self.mint_sy.supply,

)
}

2. There is an absence of explicit checks for token authority and mint consistency in all the instructions.

While some validation is performed implicitly through token CPI (Cross-Program Invocation) calls,

there are security and efficiency benefits to performing these checks explicitly before these calls.

The absence of these checks may introduce vulnerabilities and make error handling less transparent.

Furthermore, the authority accounts are not verified against SyMetaSyMeta .

3. MintSyMintSy currently permits any pre-existing token account to be utilized as the

token_base_account_authoritytoken_base_account_authority . Since any token account is allowed, users must manually

create a token account if they do not already have one, which may be cumbersome. Additionally,

this introduces the need to manage and verify multiple accounts in the program logic, increasing

complexity and the potential for errors.

Remediation

1. Include a check to ensure that the current supply of SYSY tokens does not exceed max_sy_supplymax_sy_supply .

2. Explicitly check if the token accounts and mints are consistent with what is expected, verifying that

the token mint is correct and that the authority matches the expected authority for the operation. If

any of these checks fail, return a custom error. Also, verify the authority accounts against SyMetaSyMeta .

3. Utilize an Associated Token Account (ATA) with init_if_neededinit_if_needed , which is more efficient and

secure.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 19

Marginfi Integration Audit 05 — General Findings

Patch

1. Issue #1 was resolved in PR#604.

2. Issue #2 was resolved in PR#563.

3. Issue #3 was acknowledged.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 19

https://github.com/exponent-finance/exponent-core/pull/604
https://github.com/exponent-finance/exponent-core/pull/563

Marginfi Integration Audit 05 — General Findings

Code Redundancy OS-MGI-SUG-02

Description

1. In the calculation of SyMeta::LEN_STATICSyMeta::LEN_STATIC , the size allocations for treasury_sytreasury_sy and

last_seen_share_indexlast_seen_share_index are unnecessary and may be removed.

2. In the NumberNumber implementation, is_positiveis_positive and is_negativeis_negative appear redundant since they

do not support negative values.

>_ solana/libraries/precise_number/src/lib.rs rust

impl Number {
[...]
pub fn is_positive(&self) -> bool {

self.gt(&Number::ZERO)
}

pub fn is_negative(&self) -> bool {
!self.is_positive()

}
[...]

}

Remediation

Remove the redundant and unutilized code instances highlighted above.

Patch

1. This issue was already fixed by the Exponent team.

2. Issue #2 was resolved in PR#562.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 19

https://github.com/exponent-finance/exponent-core/pull/562

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 19

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 19

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-MGI-ADV-00 | Inconsistent Reward Allocation
	[8.75em][l]OS-MGI-ADV-01 | Missing Padding Bytes
	[8.75em][l]OS-MGI-ADV-02 | Incorrect Parameter Encoding
	[8.75em][l]OS-MGI-ADV-03 | Discrepancy in Conversion of Synthetic Yield Tokens

	General Findings
	[8.75em][l]OS-MGI-SUG-00 | Non-deterministic Destination Account
	[8.75em][l]OS-MGI-SUG-01 | Missing Validation Logic
	[8.75em][l]OS-MGI-SUG-02 | Code Redundancy

	Appendices
	Vulnerability Rating Scale
	Procedure

