
Audit
FOMOSolana

Presented by:

OtterSec contact@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Tamta Topuria tamta@osec.io

mailto:contact@osec.io
mailto:sud0u53r.ak@osec.io
mailto:tamta@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-FOMO-ADV-00 [high] | Disparity In Rewards Update . 6
OS-FOMO-ADV-01 [high] | Missing Referrer Validation . 8
OS-FOMO-ADV-02 [low] | Rounding Error . 9

05 General Findings 10
OS-FOMO-SUG-00 | Overflow Check . 11
OS-FOMO-SUG-01 | Code Refactoring . 12
OS-FOMO-SUG-02 | Unreachable Error Code Blocks . 13
OS-FOMO-SUG-03 | Code Inconsistencies . 14
OS-FOMO-SUG-04 | Inconsistent Team Allocations . 16

Appendices

A Vulnerability Rating Scale 17

B Procedure 18

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 18

01 | Executive Summary

Overview
FOMOSolana engaged OtterSec to assess the fomo-game program. This assessment was conducted
between December 11th and December 20th, 2023. For more information on our auditing methodology,
refer to Appendix B.

Key Findings
We produced 8 findings throughout this audit engagement.

In particular, we identified several high-risk vulnerabilities including the failure to update the total amount
for a user with the sidepot rewards (OS-FOMO-ADV-00) and another issue where the referral code creation
check is missing in the buy ticket instruction, allowing unintended referrer assignments without fee
payment validation (OS-FOMO-ADV-01). Additionally, we highlighted a rounding error, where the jackpot
amount and burned amount are rounded down resulting in their sum not being equal to the total amount
(OS-FOMO-ADV-02).

We also provided recommendations regarding removing unnecessary calculations of teamamounts during
the initial phase of the game and the need for inclusion of calculations of user’s share from the players
amount on chain (OS-FOMO-SUG-01). We further advised the removal of unreachable and redundant
error blocks to enhance code readability (OS-FOMO-SUG-02). Furthermore, we suggested specific code
modifications to address certain inconsistencies (OS-FOMO-SUG-03).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 18

02 | Scope
The source code was delivered to us in a git repository at github.com/Doge-Capital/FOMO-GAME. This
audit was performed against commit d9c7639.

A brief description of the programs is as follows:

Name Description

fomo-game A Solana-based game where players compete to be the last to purchase a key before a
24-hour countdown reaches zero. Key prices increase with each purchase, and players
strategically select teams, create referral codes, and contribute to various pots, including
a jackpot and side pot, to maximize their chances of winning.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 18

https://github.com/Doge-Capital/FOMO-GAME
https://github.com/Doge-Capital/FOMO-GAME/commit/d9c7639fdfde523bf4cf20085b1df34cdfee7384

03 | Findings
Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 0
Low 1

Informational 5

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 18

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-FOMO-ADV-00 High Resolved user_acc.total_amount is not updated in
buy_ticket when sidepot money is won, leading
to a potential discrepancy in accumulated rewards.

OS-FOMO-ADV-01 High Resolved Amissing referral code creation check allows unintended
referrer assignments without fee payment validation.

OS-FOMO-ADV-02 Low Resolved jackpot_amount and burned_amount are rounded
down resulting in their sum not being equal to
total_amount.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 18

FOMOSolana Audit 04 | Vulnerabilities

OS-FOMO-ADV-00 [high]| Disparity In Rewards Update

Description

buy_ticket fails to update user_acc.total_amount, when the user wins the sidepot money, re-
sulting in an inconsistency betweenuser_acc.total_amount anduser_acc.balance_amount,
which is correctlyupdatedwith the sidepot reward. Throughout theprogramuser_acc.total_amount
and user_acc.balance_amount variables are increased together as total_amount represents
the total accumulated rewards by the user (including historical rewards), whilebalance_amount tracks
accumulated rewards which haven’t been withdrawn yet by the user.

src/lib.rs RUST

pub fn buy_ticket(ctx: Context<BuyTicket>, team: String, quantity: u64) ->
Result<()> {↪→

[...]
if curr_time > game_acc.start_time + INITIAL_PHASE_DURATION {

vault_acc.sidepot_amount += total_amount / 100;
vault_acc.sidepot_probability += quantity;
if random_num_acc.is_used {

msg!("Random number not generated");
} else {

msg!("Random number used : {}", random_num_acc.random_num);
if random_num_acc.random_num < vault_acc.sidepot_probability {

let amount = vault_acc.sidepot_amount;
user_acc.balance_amount += amount;
user_acc.sidepot_amount += amount;
user_acc.sidepot_wins += 1;

[...]
}

}
}

}

Thus, if these two values do not increase in tandem,total_amountmay fall belowbalance_amount,
resulting in a disparity between the presented total rewards and the withdrawable rewards. Any com-
putations or conditions dependent on user_acc.total_amount will yield inaccurate outcomes,
influencing the fairness and precision of reward distribution.

Remediation

Ensure that user_acc.total_amount is consistently updated alongside
user_acc.balance_amountwhenever rewards are accrued or modified, including when winning
the sidepot.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 18

FOMOSolana Audit 04 | Vulnerabilities

Patch

Resolved in ff0d967.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/ff0d967c0eddc36c32c7c390ed00953c56ec3f6d

FOMOSolana Audit 04 | Vulnerabilities

OS-FOMO-ADV-01 [high]|Missing Referrer Validation

Description

buy_ticket checks if a referrer account (referrer_acc) exists, and if so, it ensures that the authority
of the referrer is not the same as the buyer’s authority. Additionally, if the user has already utilized a
referral code (user_acc.is_referral_code_used is true), it checks that the referrer’s authority
matches the stored referrer authority in the user’s account.

However, the code does not explicitly check whether the referrer has created a referral code or paid the
required referral creation fee. This may allow users to set any user as their referrer, even if that referrer
has not paid the fee to become a referrer.

Remediation

Ensure the referrer has created a referral code before allowing users to set them as their referrer.

Patch

Resolved in 9af94da.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/9af94dab776ed72054bf5e07c16f55f38bec9e30

FOMOSolana Audit 04 | Vulnerabilities

OS-FOMO-ADV-02 [low] | Rounding Error

Description

The issue arises from rounding errors in the calculation of jackpot_amount and burned_amount
during the initial phase of the game in buy_ticket. jackpot_amount and burned_amount are
rounded down during percentage calculations, potentially causing a discrepancy between the sum of
jackpot_amount and burned_amount and the actual total_amount.

Remediation

Calculate burned_amount as burned_amount = total_amount - jackpot_amount. This
ensures that any rounding errors are captured in the subtraction, maintaining consistency with the
total_amount.

Patch

Resolved in ff0d967.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/ff0d967c0eddc36c32c7c390ed00953c56ec3f6d

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-FOMO-SUG-00 settle_reward lacks an explicit overflow check.

OS-FOMO-SUG-01 Suggestions regarding removal of team_amount calculations which are unnec-
essary during the initial phase of the game, and inclusion of settle_rewards
calculations on chain.

OS-FOMO-SUG-02 The code contains certain error blocks which are unreachable and redundant.

OS-FOMO-SUG-03 Recommendations regarding inconsistencies in get_ticket_cost and
buy_ticket.

OS-FOMO-SUG-04 In buy_ticket, during the initial phase, total_amount is added to
game_acc.team_wise_amount for variable ticket allocations, introducing
inconsistency in team-wise amounts.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 18

FOMOSolana Audit 05 | General Findings

OS-FOMO-SUG-00 | Overflow Check

Description

There is risk of accidentally releasing a debug version where overflow behavior might differ from the
release version. Thus, using explicit overflow checks in settle_reward for the calculation of
user_amount_gainwill help mitigate this risk.

src/lib.rs RUST

pub fn settle_reward(ctx: Context<SettleReward>, players_amount: u64) ->
Result<()> {↪→

let game_acc = &mut ctx.accounts.game_account;
let user_acc = &mut ctx.accounts.user_account;
[...]
let user_amount_gain = players_amount - user_acc.players_amount;
[...]

}

Remediation

Ensure to add explicit overflow check in settle_reward for the calculation of user_amount_gain
as shown below:

src/lib.rs RUST

let user_amount_gain = players_amount.checked_sub(user_acc.players_amount);
// handle overflow error

Patch

Resolved in ff0d967.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/ff0d967c0eddc36c32c7c390ed00953c56ec3f6d

FOMOSolana Audit 05 | General Findings

OS-FOMO-SUG-01 | Code Refactoring

Description

1. In buy_ticket, the team_amount calculations occur outside of the else block. They execute
in both the initial phase of the game and subsequent phases. However, these calculations are not
relevant during the initial phase of the game.

src/lib.rs RUST

pub fn buy_ticket(ctx: Context<BuyTicket>, team: String, quantity: u64) ->
Result<()> {↪→

[...]
// This block executes during both initial and subsequent phases
game_acc.total_amount += total_amount;
game_acc.total_tickets += quantity;
game_acc.team_wise_amount[get_team_index(&team) as usize] += total_amount;

let team_amount = total_amount * team_percentage / 100;
game_acc.team_amount += team_amount;
vault_acc.total_team_amount += team_amount;
vault_acc.balance_team_amount += team_amount;

vault_acc.total_amount += total_amount - burned_amount;
vault_acc.balance_amount += total_amount - burned_amount;
[...]

}

2. In settle_reward, it would be better to move the calculation of the user’s share from the
players_amount on-chain, as opposed to being calculated off-chain, in order to enhance decen-
tralization.

Remediation

1. Move the calculations for team_amount to the else block above within buy_ticket.

2. Ensure the calculation of the user’s share from the players_amount are done on chain.

Patch

1. Resolved in 5628e34.

2. Resolved in ff0d967.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/5628e341905b05104df2e29486f4121d1f938b2a
https://github.com/Doge-Capital/FOMO-GAME/commit/ff0d967c0eddc36c32c7c390ed00953c56ec3f6d

FOMOSolana Audit 05 | General Findings

OS-FOMO-SUG-02 | Unreachable Error Code Blocks

Description

1. The error code block for the GameAlreadyInitialized error in initialize_game is inac-
cessible as the #[account(init)] attribute on game_account initializes a new
GameAccount.

src/lib.rs RUST

pub fn initialize_game(ctx: Context<InitializeGame>) -> Result<()> {
let game_acc = &mut ctx.accounts.game_account;
if game_acc.is_initialized {

return err!(CustomError::GameAlreadyInitialized);
}
[...]

}

2. In buy_ticket, there is an else if block that checks if
user_acc.is_referral_code_used is true and referrer_account is None. This con-
ditionmay be redundant since if the user has utilized a referral code (is_referral_code_used
is true), the previous
if let referrer_acc = &mut ctx.accounts.referrer_account block would
have already executed, rendering it impossible for referrer_account to be None in the else
if block.

Remediation

1. Remove the GameAlreadyInitialized error block.

2. Remove the redundant else if block.

Patch

1. Resolved in 31dcc91.

2. Resolved in 2f4144b.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/31dcc91a976ab278a7b6cf81bef1ceb815b945ff
https://github.com/Doge-Capital/FOMO-GAME/commit/2f4144bbe06dd33317b10a3abf27909c798eef99

FOMOSolana Audit 05 | General Findings

OS-FOMO-SUG-03 | Code Inconsistencies

Description

1. In the formula for calculating the cost in get_ticket_cost, there is an inconsistency in the base
value utilized, which is 1.002, contrary to the base value of 1.0002 as specified in the documentation.
Similarly, the referral creation fee in the documentation is mentioned as 0.1 SOL, while the code
indicates 0.001 SOL.

2. buy_ticket computes the burned_amount at the commencement of the game. However, it
neglects to incorporate this value into the burned_amount attributes of both game_acc and
vault_acc. This discrepancy may result in an inconsistency, not accurately reflecting the burned
amount in the game and vault records.

src/lib.rs RUST

pub fn buy_ticket(ctx: Context<BuyTicket>, team: String, quantity: u64) ->
Result<()> {↪→

[...]
if curr_time <= game_acc.start_time + INITIAL_PHASE_DURATION {

total_amount = get_ticket_cost(1, 1) * quantity;
game_acc.const_tickets += quantity;
game_acc.jackpot_amount += total_amount * 90 / 100;
if user_acc.is_referral_code_used {

referrer_percentage = 10;
} else {

burned_amount = total_amount / 10;
}

}
[...]

}

3. In its current implementation, buy_ticket lacks a check to ensure that all the percentages from
the team info add up to 86.

Remediation

1. Ensure the documentation is consistent with the code.

2. Add the burned amount to both the game account (game_acc) and the vault account
(vault_acc).

3. Implement a check to ensure all the percentages add up to 86.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 18

FOMOSolana Audit 05 | General Findings

Patch

1. Resolved in c95329d.

2. Resolved in 5628e34.

3. Resolved in 5628e34.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 18

https://github.com/Doge-Capital/FOMO-GAME/commit/c95329de5370a7d4730e5f4aaa052b8fd88880cb
https://github.com/Doge-Capital/FOMO-GAME/commit/5628e341905b05104df2e29486f4121d1f938b2a
https://github.com/Doge-Capital/FOMO-GAME/commit/5628e341905b05104df2e29486f4121d1f938b2a

FOMOSolana Audit 05 | General Findings

OS-FOMO-SUG-04 | Inconsistent Team Allocations

Description

In buy_ticket, total_amount is added to game_acc.team_wise_amount even during the ini-
tial game phase. The constant ticket allocation logic applies in the initial phase (curr_time <=
game_acc.start_time + INITIAL_PHASE_DURATION). total_amount should contribute to
game_acc.team_wise_amount only for the constant tickets allocated
(game_acc.const_tickets), not for the variable ticket allocations
(quantity - game_acc.const_tickets).

src/lib.rs RUST

pub fn buy_ticket(ctx: Context<BuyTicket>, team: String, quantity: u64) ->
Result<()> {↪→

[...]

game_acc.total_amount += total_amount;
game_acc.total_tickets += quantity;
game_acc.team_wise_amount[get_team_index(&team) as usize] += total_amount;

[...]
}

The inconsistency arises as the program adds the total amount to game_acc.team_wise_amount
without distinguishing between constant and variable tickets during the initial phase. This may result in
inaccurate team-wise amounts during the initial phase, potentially affecting subsequent calculations and
rewards.

Remediation

Modify the logic in the initial phase to add total_amount only for the constant ticket allocation and
adjust the team-wise amounts accordingly to ensure consistency in the allocation process.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 18

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 18

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-FOMO-ADV-00 [high] | Disparity In Rewards Update
	OS-FOMO-ADV-01 [high] | Missing Referrer Validation
	OS-FOMO-ADV-02 [low] | Rounding Error

	General Findings
	OS-FOMO-SUG-00 | Overflow Check
	OS-FOMO-SUG-01 | Code Refactoring
	OS-FOMO-SUG-02 | Unreachable Error Code Blocks
	OS-FOMO-SUG-03 | Code Inconsistencies
	OS-FOMO-SUG-04 | Inconsistent Team Allocations

	Appendices
	Vulnerability Rating Scale
	Procedure

