
Audit
Hubble Farms

Presented by:

OtterSec contact@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Ajay Kunapareddy d1r3wolf@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:sud0u53r.ak@osec.io
mailto:d1r3wolf@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-FRM-ADV-00 [high] | Modification Of Time Unit . 6
OS-FRM-ADV-01 [high] | Reward Parameter Modifications . 8
OS-FRM-ADV-02 [med] | Incorrect Addition Of Staked Amounts 10
OS-FRM-ADV-03 [low] | Incorrect Removal Of Pending Deposit Stake 12

05 General Findings 14
OS-FRM-SUG-00 | Double Verification For Owner Change . 15
OS-FRM-SUG-01 | Unused Code . 16
OS-FRM-SUG-02 | Error Handling . 17
OS-FRM-SUG-03 | Code Maturity . 18
OS-FRM-SUG-04 | Missing Checks . 19
OS-FRM-SUG-05 | Code Optimizations . 20

Appendices

A Vulnerability Rating Scale 22

B Procedure 23

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 23

01 | Executive Summary

Overview
Hubble Protocol engaged OtterSec to perform an assessment of the farms program. This assessment
was conducted between October 4th and October 13th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Throughout this audit engagement, we produced 10 findings in total.

In particular, we identified multiple high-risk vulnerabilities, including one concerning the potential
modification of the time unit in the farm configuration midway, resulting in incorrect values for accrued
rewards and reward types (OS-FRM-ADV-00).

We discovered another issue pertaining to the alteration of reward parameters without properly updating
global rewards, resulting in inaccurate reward distributions (OS-FRM-ADV-01). We also advised against
permitting withdrawals that reduce either the total active amount or total pending amount to zero, as this
may be exploitable and disrupt functions relying on these values (OS-FRM-ADV-03).

We also recommended implementing a two-step process when updating the owner for specific structures
to minimize the risk of inadvertent change in ownership (OS-FRM-SUG-00) and proposed the removal of
unused code (OS-FRM-SUG-01). Additionally, we suggested the inclusion of missing checks (OS-FRM-SUG-
04) alongwith code adjustments and optimizations to improve readability and efficiency (OS-FRM-SUG-03,
OS-FRM-SUG-05).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 23

02 | Scope
The source code was delivered to us in a git repository at github.com/hubbleprotocol/farms. This audit
was performed against commit 5fcec0d.

A brief description of the programs is as follows:

Name Description

farms A versatile farm/staking pool featuring permissionless farms, each with a distinct global ad-
ministrator. Users have the flexibility to stake or unstake at any time, and they may harvest
their accrued rewards individually.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 23

https://github.com/hubbleprotocol/farms
https://github.com/hubbleprotocol/farms/commit/5fcec0db1bb66f623713cbf413225287c80f31c5

03 | Findings
Overall, we reported 10 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 2

Medium 1
Low 1

Informational 6

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 23

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-FRM-ADV-00 High Resolved Updating time_unit in UpdateFarmConfig results in
incorrect accrued rewards and reward type values.

OS-FRM-ADV-01 High Resolved Modifying reward parameters without properly updating
global rewards results in inaccurate reward distributions.

OS-FRM-ADV-02 Medium Resolved update_user_rewards_tally_on_stake_increase
is invoked for pending stakes, forcing early inclusion of
these stakes in the rewards tally.

OS-FRM-ADV-03 Low Resolved convert_stake_to_amount incorrectly adds a user’s
stake to the total amount, miscalculating the conversion of
stake shares to token amounts.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 23

Hubble Farms Audit 04 | Vulnerabilities

OS-FRM-ADV-00 [high]|Modification Of Time Unit

Description

update_farm_config updates the configuration of a farming pool, allowing pool administrators
to modify various parameters and settings within the farm to adapt to changing market conditions.
Particularly, UpdateFarmConfig instructionmodifiestime_unit, which represents the time interval
over which the distribution of rewards occurs and how frequently users can claim their rewards.

farm_operations.rs RUST

pub fn update_farm_config(
farm_state: &mut FarmState,
mode: FarmConfigOption,
data: &[u8; 32],

) -> Result<()> {
match mode {

[...]
FarmConfigOption::UpdateFarmTimeUnit => {

let value: u8 = BorshDeserialize::deserialize(&mut &data[..])?;
[...]
farm_state.time_unit = value;

}
[...]

};
Ok(())

}

The issue arises as time_unit correlates with multiple crucial time stamps such as
last_issuance_ts in reward_infos, representing the timestamp of the last issuance of rewards
to users, and last_claim_ts in user_state, responsible for recording the time when a user last
claimed their rewards.

Therefore, updating time_unitwill modify these time stamps. Users who have previously staked their
assets and claimed rewards will have done so using the earlier time_unit, and a sudden change in this
value may result in inconsistencies, as the historical data regarding when users staked and when rewards
were issued is no longer valid.

Moreover, this change will inconvenience users who have become used to claiming rewards based on the
previous time duration. It may result in generating inaccurate reward calculations, discrepancies in when
users may claim rewards, and confusion regarding their expected rewards and claim timing.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 23

Hubble Farms Audit 04 | Vulnerabilities

Proof of Concept

1. The contract uses time_unit of seconds, with users earning rewards based on this unit.

2. An administrator decides to change time_unit to minutes, and the contract updates accordingly.

3. The change in time_unit renders last_issuance_ts in reward_infos incompatible with
the new time_unit.

4. Users’ last_claim_ts in user_state is tied to the old time_unit, potentially resulting in
timing and calculation issues when claiming rewards.

The changes described above may cause user reward discrepancies and inconsistent calculations.

Remediation

Ensure the time_unit is not modified mid-course.

Patch

Fixed in 6ac662e by removing option to change time unit.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 23

https://github.com/otter-sec/hubbleprotocol/farms/commit/6ac662e5f8d295133ce0bfb9508188dc5a89cd98

Hubble Farms Audit 04 | Vulnerabilities

OS-FRM-ADV-01 [high]| Reward Parameter Modifications

Description

update_reward_config allows for the directmodification of parameters likereward_per_share,
reward_type, and rewards_per_second_decimalswithin the RewardInfo structure. These
parameters are essential for calculating and distributing rewards to users.

farm_operations.rs RUST

pub(crate) fn update_reward_config(
reward_info: &mut RewardInfo,
mode: FarmConfigOption,
value: u64,
ts: u64,

) {
[...]
match mode {

FarmConfigOption::UpdateRewardRps => {
reward_info.reward_per_second = value;
reward_info.last_issuance_ts = ts;

}
FarmConfigOption::RewardType => {

let value: u8 = value.try_into().unwrap();
xmsg!(

"farm_operations::update_farm_config reward_type={value}
type={:?}",↪→

RewardType::try_from_primitive(value).unwrap()
);
reward_info.reward_type = value;

}
FarmConfigOption::RpsDecimals => {

let value: u8 = value.try_into().unwrap();
xmsg!("farm_operations::update_farm_config rps_decimals={value}",);
reward_info.rewards_per_second_decimals = value;

}
[...]

}
}

The vulnerability stems from the function not refreshing or updating the global reward state when these
parameters are modified. Consequently, these new values are applied on already elapsed time, leading to
inconsistent values for accrued rewards and reward type, resulting in inaccurate reward distribution.

Specifically, when reward_per_share is updated, and the last_issuance_ts is set to the current
timestamp, the systemmay neglect the rewards accrued from the previous configuration change to the
current timestamp.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 23

Hubble Farms Audit 04 | Vulnerabilities

Proof of Concept

1. Initially, the reward parameters are as follows:

• reward_per_share: 0.1 tokens.
• last_issuance_ts: 1000 (in seconds).

2. An update occurs utilizing update_reward_config:

• mode: UpdateRewardRps.
• value: 0.15 tokens per share.
• ts: Current timestamp (1500 seconds).

3. In this update, reward_per_share is modified from 0.1 to 0.15 tokens per share, and
last_issuance_ts is updated to 1500 seconds.

4. The issue arises because the function does not consider the time between the previous update (at
timestamp 1000) and the current update (at timestamp 1500). Users earned rewards based on the
old reward_per_share during this period.

5. The new reward_per_share setting is applied to all users immediately, and any rewards earned
between timestamps 1000 and 1500 were calculated based on the old rate.

6. As a result, users’ reward balances are not accurately updated to reflect what they should have
earned with the new parameters. This may result in inconsistent and incorrect reward distributions.

Remediation

Ensure these parameters are not directly altered without refreshing the global rewards state.

Patch

Fixed in 0064975 by refreshing global rewards before changing reward parameters on reward config.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 23

https://github.com/otter-sec/hubbleprotocol/farms/commit/006497555778326d76a8f1223c4fc0a0c5090c04

Hubble Farms Audit 04 | Vulnerabilities

OS-FRM-ADV-02 [med]| Incorrect Addition Of Staked Amounts

Description

stake is essential for users to enter the farming protocol and begin staking tokens. If there is no pending
deposit period (i.e., deposit_warmup_period is zero), the function directly adds the staked tokens
to the user’s active stake. However, if there is a pending deposit period, users experience a waiting period
before their staked tokens become active and start earning rewards.
update_user_rewards_tally_on_stake_increase instake adds a user’s earned rewards to
their rewards tally for each reward token.

farm_operations.rs RUST

pub fn stake(
farm_state: &mut FarmState,
user_state: &mut UserState,
amount: u64,
current_ts: u64,

) -> Result<StakeEffects> {
[...]
let stake_gained = if farm_state.deposit_warmup_period > 0 {

// If there is a pending stake period, we add the stake to the pending
stake↪→

user_state.pending_deposit_stake_ts = current_ts
.checked_add(farm_state.deposit_warmup_period.into())
.ok_or_else(|| dbg_msg!(FarmError::IntegerOverflow))?;

let stake_gained = stake_ops::add_pending_deposit_stake(user_state,
farm_state, amount)?;↪→

[...]
stake_gained

}
[...]
update_user_rewards_tally_on_stake_increase(farm_state, user_state,

stake_gained)?;↪→

}

The issue arises because update_user_rewards_tally_on_stake_increase is called when-
ever there is an increase in the user’s stake, whether it is an active stake or a pending stake that is still in
the warm-up period. Thus, stake prematurely adds pending stakes to the rewards tally by calling
update_user_rewards_tally_on_stake_increase for increases in both active and pending
stakes.

This results in pending stakes being added to the rewards tally before they have officially become active
and start earning rewards, which is problematic as
update_user_rewards_tally_on_stake_increase is called again when the pending stakes
turn active, effectively doubling the users rewards tally for the same token.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 23

Hubble Farms Audit 04 | Vulnerabilities

Remediation

Limit the utilization of update_user_rewards_tally_on_stake_increase solely to actively
staked amounts.

Patch

Fixed in 9949c09 by using update_user_rewards_tally_on_stake_increase on only actively
staked amounts.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 23

https://github.com/otter-sec/hubbleprotocol/farms/commit/9949c09fe64830c4890c7f1c4139f02e8e74c2e6

Hubble Farms Audit 04 | Vulnerabilities

OS-FRM-ADV-03 [low] | Incorrect Removal Of Pending Deposit Stake

Description

In stake_operations, convert_stake_to_amount converts a stake (represented as a decimal)
into an equivalent amount of tokens (represented as a u64) based on the total stake and total amount in a
farm. It ensures that token distribution is proportional and follows the specified rounding rules.

stake_operations.rs RUST

pub fn convert_stake_to_amount(
stake: Decimal,
total_stake: Decimal,
total_amount: u64,
round_up: bool,

) -> u64 {
[...]
let amount_dec = if total_stake != Decimal::zero() {

stake * total_amount / total_stake
} else {

stake + total_amount.into()
};
[...]

}

pub fn remove_pending_withdrawal_stake(
user_stake: &mut impl UserStakeAccessor,
farm: &mut impl FarmStakeAccessor,

) -> Result<u64, FarmError> {
[...]
// Round down to favor the farm.
let pending_amount_removed: u64 = convert_stake_to_amount(

user_stake.pending_withdrawal_unstake,
farm.total_pending_stake,
farm.total_pending_amount,
false,

);

farm.total_pending_amount -= pending_amount_removed;
farm.total_pending_stake = farm.total_pending_stake -

user_stake.pending_withdrawal_unstake;↪→

[...]
}

remove_pending_deposit_stake calls convert_stake_to_amount internally which returns
pending_amount_removed. The program removes this value from the pending deposit stake of a user.
Theproblemarises in theelsebranchofconvert_stake_to_amount, where it attempts to calculate
the amount of tokens based on the sum of stake and total_amount, instead of total_amount
alone.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 23

Hubble Farms Audit 04 | Vulnerabilities

When this incorrect value is deducted in remove_pending_deposit_stake, it may result in the
deduction of more tokens than the user’s pending deposit stake actually represents. In this instance, the
calculation may generate a negative balance of total_pending_amount, triggering an error.

Remediation

Modify convert_stake_to_amount to calculate the amount of tokens based on total_amount
alone, excluding the stake.

Patch

Fixed in d7411aa.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 23

https://github.com/otter-sec/hubbleprotocol/farms/commit/d7411aa623c904ef2238e3994be5ed7de1c21593

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-FRM-SUG-00 Utilize a two-step verification process to confirm a change in ownership.

OS-FRM-SUG-01 Remove unutilized functions, structure fields, accounts, and instructions.

OS-FRM-SUG-02 Lack of proper error handling in the RefreshUserState instruction and
farm_operations::update_farm_config.

OS-FRM-SUG-03 Suggestions regarding best practices and improved code readability.

OS-FRM-SUG-04 Missing checks affect code readability andmay result in security issues.

OS-FRM-SUG-05 Recommendations regarding optimizing the code to increase efficiency.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-00 | Double Verification For Owner Change

Description

The GlobalConfig structure represents the global configuration settings, and the UserState struc-
ture represents the state of a user’s interaction, containing information about the user’s stake, rewards,
etc. Currently, the owner change process for both GlobalConfig and UserState is a single-step
process; there is no confirmation step. Once the transaction is submitted, the owner change is irreversible.
This may result in a denial of service when the current owner accidentally sends an unintended input as a
parameter while executing an owner change.

Remediation

Utilize a two-step process to change the owner of the lending market.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-01 | Unused Code

Description

The following functions, structure fields, accounts, or instructions remain unused and should be removed:

1. gen_signer_seeds in macros.

2. program_id in transfer_from_vault.

3. reward_fee_rate_bps in the RewardInfo structure.

4. The system_program account in the UpdateGlobalConfig instruction.

Remediation

Remove the above-listed items, upholding best coding practices and improving readability andmaintain-
ability.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-02 | Error Handling

Description

1. The RefreshUserState instruction refreshes a user’s state within the farm. Part of this refresh
operation involves calling user_refresh_stake, responsible for activating a user’s pending
stake. However, this operation may not be suitable for delegated farms, which have different
mechanisms for handling stakes and rewards. Utilizing the same refresh mechanism for delegated
farmsmay result in issues or unintended consequences.

2. In farm_operations in update_farm_config, the program should throw an error if it is a
delegated farm and the farm admin is trying to update the deposit warmup period or withdraw
cooldownperiodandwithdraw_authority, since these values assert tobe zero inset_stake.

Remediation

1. The RefreshUserState instruction should throw an error if the farm is delegated.

2. update_farm_config should throw an error in the above-described scenario.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-03 | Code Maturity

Description

1. Renaming reward_per_second to reward_per_unit_time in the RewardInfo structure
may render the codemore accurate in terms of naming and documentation, especially when this
field is utilized for both seconds and slots.

state.rs RUST

#[zero_copy]
#[derive(AnchorSerialize, AnchorDeserialize, Debug, Default, PartialEq, Eq)]
pub struct RewardInfo {

pub token: TokenInfo,
[...]
pub reward_per_second: u64,
[...]

}

2. The seed strings for BASE_SEED_FARM_VAULTS_AUTHORITY and
BASE_SEED_TREASURY_VAULTS_AUTHORITY are identical. It is recommended to modify one
of them for the purpose of distinction.

3. In ten_pow, the error message erroneously mentions the upper range as ten instead of 19.

math.rs RUST

pub fn ten_pow(x: usize) -> u64 {
[...]
// Validate that x is in the range [0, 19]
if x > 19 {

panic!("The exponent must be between 0 and 10.");
}
[...]

}

4. refresh_global_rewards utilizes total_active_stake_scaled instead of
total_staked_amount for the early return.

Remediation

Implement the modifications mentioned above into the code base.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-04 |Missing Checks

Description

1. Add a check to restrict the maximum value to ensure that the treasury_fee_bps value does
not exceed amaximum allowed value (MAX_BPS) when updating the global configuration.

2. Modify update_farm_config to utilize reward_info.is_initialised() instead of
checking if reward_info.token.mint is not equal to Pubkey::default(). This makes
the codemore readable and potentially reduces the risk of errors.

3. Adding an authority check over the depositor_ata token account is essential to ensure the
depositor authorizes the deposit operation. This check should verify that the depositor owns the
depositor_ata account.

Remediation

1. Add the following check: value <= MAX_BPS for treasury_fee_bps updation.

2. Utilize reward_info.is_initialised() instead of
reward_info.token.mint != Pubkey::default()

3. Ensure to check the authority of the depositor_ata token account.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 23

Hubble Farms Audit 05 | General Findings

OS-FRM-SUG-05 | Code Optimizations

Description

1. In farm_operations in user_refresh_all_rewards, implement an early return if
user_state.active_stake_scaled equals zero, which prevents unnecessary code execu-
tion.

2. For the GlobalConfig, FarmConfig, UserState structures, utilizing u64 for bump is exces-
sive as u8 is sufficient for bump fields, especially when the expected range of values is small.
Similarly, in Tokeninfo, decimalsmay be of u8 type.

state.rs RUST

pub struct TokenInfo {
[...]
pub decimals: u64,

}

3. In Stake and the DepositToFarmVault instruction accounts constraints, load_mut is used,
which is inappropriate in this context as it modifies the account state. However, in this instance, no
writing occurs; it should be replaced with load, which loads the account’s state for reading.

handler_deposit_to_farm_vault.rs RUST

pub struct DepositToFarmVault<'info> {
[...]
[account(mut,

[...]
constraint = farm_vault.mint == farm_state.load_mut()?.token.mint @

FarmError::TokenFarmTokenMintMissmatch,↪→

)]
[...]

}

4. In farm_operations in initialize_user, farm_state_keymay be derived from
farm_state, eliminating the requirement of passing it as a separate function argument.

farm_operations.rs RUST

pub fn initialize_user(
farm_state: &mut FarmState,
user_state: &mut UserState,
owner_key: &Pubkey,
farm_state_key: &Pubkey,
ts: u64,

) -> Result<()> {}

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 23

Hubble Farms Audit 05 | General Findings

Remediation

Implement the optimizations listed above.

© 2023 Otter Audits LLC. All Rights Reserved. 21 / 23

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 22 / 23

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 23 / 23

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-FRM-ADV-00 [high] | Modification Of Time Unit
	OS-FRM-ADV-01 [high] | Reward Parameter Modifications
	OS-FRM-ADV-02 [med] | Incorrect Addition Of Staked Amounts
	OS-FRM-ADV-03 [low] | Incorrect Removal Of Pending Deposit Stake

	General Findings
	OS-FRM-SUG-00 | Double Verification For Owner Change
	OS-FRM-SUG-01 | Unused Code
	OS-FRM-SUG-02 | Error Handling
	OS-FRM-SUG-03 | Code Maturity
	OS-FRM-SUG-04 | Missing Checks
	OS-FRM-SUG-05 | Code Optimizations

	Appendices
	Vulnerability Rating Scale
	Procedure

