
Audit
Kamino Finance

Presented by:

OtterSec contact@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Thibault Marboud thibault@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:sud0u53r.ak@osec.io
mailto:thibault@osec.io
mailto:r@osec.io


Contents
01 Executive Summary 2

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-KAMI-ADV-00 [high] | Elevation Group ID Mismatch . . . . . . . . . . . . . . . . . . . . . . 6
OS-KAMI-ADV-01 [high] | Improper Checking Of Instruction Sequence . . . . . . . . . . . . . . 8
OS-KAMI-ADV-02 [high] | Failure To Update Farm Admin . . . . . . . . . . . . . . . . . . . . . 10
OS-KAMI-ADV-03 [low] | Inconsistent Checks On Elevation Group . . . . . . . . . . . . . . . . 12
OS-KAMI-ADV-04 [low] | Unchecked Mode Parameter . . . . . . . . . . . . . . . . . . . . . . . 14
OS-KAMI-ADV-05 [low] | Discrepancy In Elevation Group . . . . . . . . . . . . . . . . . . . . . 16
OS-KAMI-ADV-06 [low] | Inconsistent Calculation Of Max Withdraw Value . . . . . . . . . . . . 17
OS-KAMI-ADV-07 [low] | Lack Of Withdraw Functionality . . . . . . . . . . . . . . . . . . . . . 19

05 General Findings 20
OS-KAMI-SUG-00 | Double Verification For Owner Change . . . . . . . . . . . . . . . . . . . . . 21
OS-KAMI-SUG-01 | Removal Of Redundant And Unused Code . . . . . . . . . . . . . . . . . . . 22
OS-KAMI-SUG-02 | Unnecessary Conditional Calculation . . . . . . . . . . . . . . . . . . . . . . 23
OS-KAMI-SUG-03 | Code Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
OS-KAMI-SUG-04 | Incorrect Usage Of Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices

A Vulnerability Rating Scale 28

B Procedure 29

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 29



01 | Executive Summary

Overview
Kamino Finance engaged OtterSec to perform an assessment of the kamino-lending program. This
assessment was conducted between August 18th and September 6th, 2023. For more information on our
auditing methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 13 findings in total.

In particular, we have identified several vulnerabilities within the function responsible for refreshing an
obligation, including issues with the validation process for the required instruction sequence (OS-KAMI-
ADV-01) and the lapse in utilizing the mode parameter, permitting a single farm to undergo multiple
refreshes (OS-KAMI-ADV-04).

Furthermore, we highlighted a flawed comparison check, which resulted in the inability to assign a specific
elevation group to the lending market (OS-KAMI-ADV-00) and another issue, which resulted in the failure
to refresh an obligationwhen the lendingmarket owner removes the removed the specific elevation group
id associated with that obligation (OS-KAMI-ADV-05).

We also recommended implementing a two-step process while updating the owner for a lending market
tominimize the risk of inadvertent utilization of the functionality (OS-KAMI-SUG-00). We further suggested
the removal of redundant checks and repetitive code blocks to enhance code readability and efficiency
(OS-KAMI-SUG-01, OS-KAMI-SUG-03).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 29



02 | Scope
The source code was delivered in a Git repository at github.com/hubbleprotocol/kamino-lending. This
audit was performed against commit 88dfca4.

A brief description of the programs is as follows.

Name Description

kamino-lending The protocol has been designed to facilitate the borrowing and lending of assets,
sharing certain similarities with existing platforms like SPL Lending and Solend
protocols. It offers a range of additional features to enhance user experience and
the protocol’s functionality. These features include specialized farms for manag-
ing reserves, where each farm corresponds to a specific kind of collateral or debt,
establishing insurance funds for added security, and a mechanism for socializing
losses.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 29

https://github.com/hubbleprotocol/kamino-lending
https://github.com/hubbleprotocol/kamino-lending/commit/88dfca4252315310ebb836817f31620de09eb66c


03 | Findings
Overall, we reported 13 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 3

Medium 0
Low 5

Informational 5

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 29



04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-KAMI-ADV-00 High Resolved refresh_obligation will fail to execute if
the lending market owner removes the specific
elevation_group.id associated with that obligation.

OS-KAMI-ADV-01 High Resolved check_ixns utilizes the samemechanism to validate pre
and post-instructions, which may not function as intended.

OS-KAMI-ADV-02 High Resolved Incorrect process for updating a lendingmarket owner re-
sults in the new owner not being assigned as the farm ad-
min.

OS-KAMI-ADV-03 Low Resolved handler_update_lending_market permits the
lending market owner to modify elevation group fields
without validating them to ensure compliance with the
reserve configuration’s restrictions.

OS-KAMI-ADV-04 Low Resolved refresh_ix_utils::check_refreshdoesnot take
into account the mode parameter, enabling a single farm
to be refreshedmultiple times.

OS-KAMI-ADV-05 Low Resolved Inability to assign a specific elevation_group.id to
the lending market due to a faulty comparison check.

OS-KAMI-ADV-06 Low Resolved withdraw_obligation_collateral determines
the value of max_withdraw_value, considering the
loan-to-value (LTV) on the withdraw reserve instead of the
associated elevation group.

OS-KAMI-ADV-07 Low Resolved Absence of a dedicated instruction for facilitating the with-
drawal of fees from the fee_vault.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 29



Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-00 [high] | Elevation Group ID Mismatch

Description

The vulnerability is related to potential denial of service risks due to amismatch between the elevation
group on an obligation and the available elevation groups on the reserve. This issue arises when an
obligation is refreshed before utilizing it or requesting a new elevation group.

lending_operations.rs RUST

/* The below check is implemented in both refresh_obligation_deposits and
refresh_obligation_borrows with the exception deposit_reserve is changed to
borrow_reserve refresh_obligation_borrows.*/

↪→

↪→

if elevation_group != ELEVATION_GROUP_NONE
&& !deposit_reserve

.config

.elevation_groups

.contains(&elevation_group)
{

return err!(LendingError::InconsistentElevationGroup);
}

In the provided code, when refreshing an obligation, refresh_obligation checks if the elevation
group specified in the obligation exists in the set of elevation groups for the associated reserve. This check
is done within refresh_obligation_deposits and refresh_obligation_borrows, called
internally. If the elevation group specified in the obligation does not exist in the reserve’s elevation groups,
it results in an error: (LendingError::InconsistentElevationGroup).

The problem arises if the lending market owner, who may modify reserve configurations, removes an
elevation group from the reserve associated with existing obligations, which may be done via
update_reserve_config.

lending_operations.rs RUST

pub fn update_reserve_config(
reserve: &mut Reserve,
mode: UpdateConfigMode,
value: [u8; VALUE_BYTE_ARRAY_LEN_RESERVE],) {
match mode {
UpdateConfigMode::UpdateElevationGroup => {

let elevation_group_categories: [u8; 5] =
value[..5].try_into().unwrap();↪→

reserve.config.elevation_groups = elevation_group_categories;
}

[...]
}

}

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 29



Kamino Finance Audit 04 | Vulnerabilities

Thus, these obligations become stale in such a scenario because their elevation group no longer exists
on the reserve. This may result in a denial of service, as users will be unable to refresh or manage these
obligations.

Proof Of Concept

Initially, there is a lendingmarketwithmultiple elevationgroups, includingelevationgroupAandelevation
group B. Obligation one specifies elevation group A as its elevation group, and obligation two specifies
elevation group B.

1. The lendingmarket owner decides tomake changes and removes elevation groupB from the reserve
configuration via update_reserve_config, leaving only elevation group A in the reserve.

2. Now, when obligation two calls refresh_obligation, it encounters the following error:
InconsistentElevationGroup as elevation group B no longer exists on the reserve. As a
result, obligation two becomes stale and cannot be managed or refreshed.

3. Obligation one, which specifies elevation group A, is still functional as it matches the remaining
elevation group on the reserve.

As a result, users with stale obligations may experience a denial of service. They will be unable to refresh,
repay, or liquidate their obligations, effectively locking their funds.

Remediation

Ensure on updating ElevationGroup, the previous elevation groups still hold valid for existing obliga-
tions associated with them, but with new obligations not being able to select those groups.

Patch

Fixed in PR#110 by adding a flag to disable new loans on an elevation group instead of disabling that
elevation group.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/110


Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-01 [high] | Improper Checking Of Instruction Sequence

Description

In refresh_ix_utils.rs, check_ixns ensures that a specific sequence of instructions, as defined
by the RequiredIx structures, is executed correctly andmeets certain criteria. It ensures that, before
and after performing any operation on the reserve concerning a user’s obligation, the user’s stake is
properly refreshed, and all parameters are updated to reflect the latest values, preventing the use of
stale values during depositing or borrowing operations on an obligation, or while providing liquidity to
reserves.

The issue is related to the discrepancy in the check_refresh due to how it checks the required instruc-
tions, specifically for required_post_ixs. The function uses the samemechanism to validate both
pre and post-instructions, which may result in a false validation of the sequence of instructions, causing
incorrect updates to obligations and reserves and reducing the financial integrity of the protocol.

refresh_ix_utils.rs RUST

pub fn check_refresh(
instruction_sysvar_account_info: &AccountInfo,
reserves: &[(Pubkey, &Reserve)],
obligation_address: &Pubkey,

) -> Result<()> {
[...]

let check_ixns = |required_ixns: Vec<RequiredIx>| -> Result<()> {
for (i, required_ix) in required_ixns.iter().enumerate() {

let ix = ix_loader
.load_instruction_at(

current_idx
.checked_sub(i + 1)
.ok_or(LendingError::IncorrectInstructionInPosition)?,

)
.map_err(|_| LendingError::IncorrectInstructionInPosition)?;

let ix_discriminator: [u8; 8] = ix.data[0..8].try_into().unwrap();
require_keys_eq!(ix.program_id, crate::id());
require!(

ix_discriminator == required_ix.discriminator(),
LendingError::IncorrectInstructionInPosition

);
for (key, index) in required_ix.accounts.iter() {

require_keys_eq!(
ix. accounts

.get(*index)

.ok_or(LendingError::IncorrectInstructionInPosition)?

.pubkey,
*key

);
}

}

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 29



Kamino Finance Audit 04 | Vulnerabilities

The issue stems from the fact that the function relies on check_ixns to validate the sequence of in-
structions, but check_ixns primarily checks the instructions that precede the current instruction index
and not the instructions that follow it. Thus, if multiple reserves have different farm configurations, the
function may not properly validate the order of instructions across these reserves and may result in a
denial of service due to large amounts of instructions that must be processed.

Proof Of Concept

1. Let the current instruction (ix) be a deposit for the obligation collateral.

2. The following is the sequence of instructions that must be executed:

• not checked init_obligation_for_farm (s).
• refresh_reserve (s - multiple reserves in case of liquidation).
• refresh_obligation.
• refresh_obligation_farms_for_reserve (s) (collateral && debt) (if has farms).
• the current instruction.

3. check_ixnswould validate this sequence of instructions even though no refresh operation has
been called post current (ix). I.e., the following instruction was missing:
refresh_obligation_farms_for_reserve (s).

4. This may result in an improper update of the obligation parameters where the deposited collateral
may not be properly reflected in the obligation.

Remediation

Modify check_ixns to consider instructions before and after the current instruction. This ensures the
refresh instructions are correctly ordered in the transaction sequence.

Patch

Fixed in PR#115 by adding another struct to determine the type of instructions being checked and checking
the instructions accordingly.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/115


Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-02 [high] | Failure To Update Farm Admin

Description

The issue is related to the ownership of a farming pool (farm) being linked to the owner of a lendingmarket
and how this linkage is established and updated.

farms_ixs.rs RUST

pub fn cpi_initialize_farm_delegated(ctx: &Context<InitFarmsForReserve>) ->
Result<()> {↪→

let lending_market = ctx.accounts.lending_market.load()?;
let lending_market_key = ctx.accounts.lending_market.key();
let farm_state_key = ctx.accounts.farm_state.to_account_info().key();
let accounts = farms::accounts::InitializeFarmDelegated {

farm_admin: ctx.accounts.lending_market_owner.to_account_info().key(),
[...]

}

The InitFarmsForReserve instruction sets the farm admin as the lendingmarket owner when ini-
tializing the farm-state in cpi_initialize_farm_delegated as shown above. This establishes the
ownership relationship between the lending market owner and the farm.

klend_client.rs RUST

pub async fn update_market(
&self,
lending_market_pubkey: Pubkey,
mode: UpdateLendingMarketMode,
value: UpdateLendingMarketConfigValue,

) -> Result<()> {
let lending_market: LendingMarket = self

.client

.get_anchor_account(&lending_market_pubkey)

.await?;
let tx = self.client.tx_builder().add_anchor_ix(

&self.config.program_id,
kamino_lending::accounts::UpdateLendingMarket {

lending_market_owner: lending_market.lending_market_owner,
lending_market: lending_market_pubkey,

},
kamino_lending::instruction::UpdateLendingMarket {

mode: mode as u64,
value: value.to_bytes(),

},
);
[...]

}

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 29



Kamino Finance Audit 04 | Vulnerabilities

However, this ownership is not automatically updated if the owner of the lending market changes later, as
seen in the above function. This may result in a situation where the farm is still controlled by the previous
owner of the lending market, even after the ownership of the lending market has been transferred.

This creates amismatchwhere the lendingmarket and farm ownership are not synchronized. In a properly
functioning system, when you change the owner of the lendingmarket, the ownership of associated farms
should also be updated to match the new lending market owner.

Proof Of Concept

1. A lending market is operated by owner A.

2. A farm is initialized and associated with the above lending market via InitFarmsForReserve.

3. cpi_initialize_farm_delegatedwhich takesInitFarmsForReserve as an argument
sets the owner of the farm as the owner of the lending market, i.e., farm admin is set to A.

4. Later, ownership of the lending market is transferred from owner A to owner B by executing
update_market.

5. After the ownership transfer, the lending market now belongs to owner B, but the farm is still
administered by owner A because the relationship was established when the farm was initialized.

Remediation

Update the farm admin when the ownership of the lending market changes.

Patch

The Kamino Finance team acknowledged the issue and decided to add a CLI tool tomodify the farm admin
before updating the lending market owner.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 29



Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-03 [low] | Inconsistent Checks On Elevation Group

Description

The issue relates to potential inconsistencies in the protocol’s verification of elevation groups, loan-to-
value (LTV) ratios, and liquidation threshold values. Elevation groups categorize assets based on their
risk profiles, where each elevation group has specific loan-to-value ratios and liquidation thresholds.
Loan-to-value ratios determine howmuch collateral a borrower must maintain relative to their borrowed
amount, while liquidation thresholds represent the point at which a borrower’s collateral-to-debt ratio
triggers liquidation. Assets or elevation groups with higher risk may have lower liquidation thresholds.

lending_operations.rs RUST

pub fn validate_reserve_config(config: &ReserveConfig, market: &LendingMarket) ->
Result<()> {↪→

for elevation_group_id in config.elevation_groups {

let elevation_group = get_elevation_group(elevation_group_id, market)?;
if elevation_group_id == ELEVATION_GROUP_NONE {

// The reserve is removed from an elevation group id
} else {

[...]
if elevation_group.liquidation_threshold_pct <

config.liquidation_threshold {↪→

msg!("Invalid liquidation threshold, elevation id liquidation
threshold must be greater than the config's");↪→

return err!(LendingError::InvalidConfig);
}
if elevation_group.ltv_ratio_pct < config.loan_to_value_ratio {

msg!("Invalid ltv ratio, cannot be bigger than the ltv ratio");
return err!(LendingError::InvalidConfig);

}
}

}
}

While assigning elevation group IDs to the reserves configuration, the values in the elevation group are
checked with the loan-to-value and liquidation threshold values on the reserves configuration, as shown
in the code above.

However, the lending market owner has the authority to change the loan-to-value ratios and liquidation
thresholds for elevationgroups. This introducesapotential inconsistencybecause, during themodification
of these values by the owner, there is no mechanism to ensure that existing reserves and obligations
comply with the new values, as seen in the code snippet below. This may result in situations where
reserves and borrowers are no longer adequately collateralized or are at risk of liquidation.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 29



Kamino Finance Audit 04 | Vulnerabilities

handler_update_lending_market.rs RUST

pub fn process(
ctx: Context<UpdateLendingMarket>,
mode: u64,
value: [u8; VALUE_BYTE_ARRAY_LEN_MARKET],

) -> Result<()> {
UpdateLendingMarketMode::UpdateElevationGroup => {

let elevation_group: ElevationGroup =
BorshDeserialize::deserialize(&mut &value[..]).unwrap();

msg!("Value is {:?}", elevation_group);
[...]
if elevation_group.liquidation_threshold_pct >= 100

|| elevation_group.ltv_ratio_pct >= 100
|| elevation_group.ltv_ratio_pct >

elevation_group.liquidation_threshold_pct↪→

|| elevation_group.max_liquidation_bonus_bps > FULL_BPS as u16
{

return err!(LendingError::InvalidElevationGroupConfig);
}
[...]

}
}

Remediation

Implement a validationmechanism that verifies the validity of the new loan-to-value ratios and liquidation
thresholds set by the lending market owner for elevation groups.

Patch

The Kamino Finance team acknowledged the issue and decided to create a tool in the CLI to validate these
values.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 29



Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-04 [low] | Unchecked Mode Parameter

Description

The vulnerability in check_refreshmay allow a user to refresh the same collateral or debt farm twice
while avoiding the refresh of the other farm associated with the reserve.

A reservemay havemultiple farms associatedwith it. Each farm corresponds to a specific kind of collateral
or debt. Farmsmanage collateral and debt associated with reserves. check_refresh checks the
correctness and sequence of instructions related to these farms.

refresh_ix_utils.rs RUST

pub fn check_refresh(
instruction_sysvar_account_info: &AccountInfo,
reserves: &[(Pubkey, &Reserve)],
obligation_address: &Pubkey,

) -> Result<()> {
[...]

let check_ixns = |required_ixns: Vec<RequiredIx>| -> Result<()> {
for (i, required_ix) in required_ixns.iter().enumerate() {

let ix = ix_loader
.load_instruction_at(

current_idx
.checked_sub(i + 1)
.ok_or(LendingError::IncorrectInstructionInPosition)?,

)
.map_err(|_| LendingError::IncorrectInstructionInPosition)?;

let ix_discriminator: [u8; 8] = ix.data[0..8].try_into().unwrap();
require_keys_eq!(ix.program_id, crate::id());
require!(

ix_discriminator == required_ix.discriminator(),
LendingError::IncorrectInstructionInPosition

);
for (key, index) in required_ix.accounts.iter() {

require_keys_eq!(
ix.accounts

.get(*index)

.ok_or(LendingError::IncorrectInstructionInPosition)?

.pubkey,
*key

);
}

}
Ok(())

};
[...]

}

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 29



Kamino Finance Audit 04 | Vulnerabilities

In the provided code, when iterating over farms for a reserve, the RequiredIx structure is being con-
structed, but it does not consider the specific farm type (collateral or debt) or the associated farm state
account.

As a result, the code only checks the refresh of a farm based on its position in the loop but not based on
the farm type or associated farm state account. This means a user may refresh the same collateral or debt
farmmultiple times while avoiding the refresh of the other farms associated with the reserve.

Remediation

Add (reserve.get_farm(farm_type), 4) to the accounts vector in
required_ix to ensure all the reserve farms are properly refreshed.

Patch

Fixed in PR#115 by adding (reserve.get_farm(farm_type), 4) to the accounts vector in
required_ix.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/115


Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-05 [low] | Discrepancy In Elevation Group

Description

In consts.rs, the constant MAX_NUM_ELEVATION_GROUPS is assigned a value of ten, representing
the maximum number of elevation groups in the lending market. Each market is associated with certain
elevation groups with an ID ranging from one to ten.

handler_update_lending_market.rs RUST

pub fn process(
ctx: Context<UpdateLendingMarket>,
mode: u64,
value: [u8; VALUE_BYTE_ARRAY_LEN_MARKET],

) -> Result<()> {
UpdateLendingMarketMode::UpdateElevationGroup => {

let elevation_group: ElevationGroup =
BorshDeserialize::deserialize(&mut &value[..]).unwrap();

msg!("Value is {:?}", elevation_group);

// Check the elevation group id is valid
if elevation_group.id >= MAX_NUM_ELEVATION_GROUPS {

return err!(LendingError::InvalidElevationGroupConfig);
}
[...]

}
}

However, within handler_update_lending_market::process, when updating the elevation
groups, it is observed that the elevation_group.id is constrained to a maximum value of nine. This
constraint implies that the highest possible value for elevation_group.id is nine, consequently lim-
iting the maximum index for storing elevation groups in the LendingMarket.elevation_groups
to eight. Therefore, based on the mentioned restriction, elevation groups may only accommodate a
maximum of nine values, which deviates from the intended limit of ten and restricts the users from using
the last elevation group.

Remediation

Modify the check to ensure it fails only if elevation_group.id is greater than
MAX_NUM_ELEVATION_GROUPS.

Patch

Fixed in PR#110 by modifying the above-mentioned check.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/110


Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-06 [low] | Inconsistent Calculation Of Max Withdraw Value

Description

withdraw_obligation_collateral utilizes the loan-to-value (LTV) ratio from the
withdraw_reserves configuration to calculate max_withdraw_value, which may not align with
the user’s obligation if the obligation’s elevation group is different from that of the reserve, resulting in
incorrect maximum limits and a loss of funds for the user. obligation.allowed_borrow_value
is calculated based on the loan-to-value on the elevation group; thus, it is best to maintain consistency
and utilize the value specified in the associated elevation group.

lending_operations.rs RUST

pub fn withdraw_obligation_collateral(
lending_market: &LendingMarket,
withdraw_reserve: &Reserve,
obligation: &mut Obligation,
collateral_amount: u64,
slot: Slot,
withdraw_reserve_pk: Pubkey,

) -> Result<u64> {
[...]
let max_withdraw_value =
obligation.max_withdraw_value(Rate::from_percent(loan_to_value_ratio_pct))?;
[...]
}

Proof Of Concept

Suppose a lending protocol has two elevation groups: group A and group B. User A has an obligation
associated with group A, and they want to withdraw collateral from a reserve (call it reserve X). reserve X
has its own loan-to-value ratio configured in its settings.

1. withdraw_obligation_collateral is called towithdraw collateral fromuserA’s obligation.
It utilizes the loan-to-value ratio from reserve X’s configuration to calculate
max_withdraw_value.

2. However, since user A’s obligation is associated with group A, the loan-to-value ratio they should
follow is the one specific to group A, not the generic loan-to-value ratio of reserve X. The protocol
allows different loan-to-value ratios for different elevation groups.

3. If the loan-to-value ratio for group A is different from that of reserve X, user Amay be unable to
withdraw as much collateral as they should based on their obligation’s configuration. They may
withdraw less collateral than expected or encounter an error indicating that the withdrawal amount
exceeds the maximum allowed by configuration of reserve X.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 29



Kamino Finance Audit 04 | Vulnerabilities

Remediation

Ensurewithdraw_obligation_collateralutilizes the loan-to-value ratio specific to the elevation
group associated with the user’s obligation.

Patch

Fixed in PR#110 by considering the loan-to-value ratio of the elevation group associated with the user’s
obligation.

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/110


Kamino Finance Audit 04 | Vulnerabilities

OS-KAMI-ADV-07 [low] | Lack Of Withdraw Functionality

Description

To ensure the proper operation of the lendingmarket, include clear instructions for the lendingmarket
owner about the withdrawal of the fees that have been collected into fee_vault as currently, there
exists no mechanism to extract the deposited fee from fee_vault. This may result in any deposited fee
being permanently locked up in fee_vault, making it unusable.

Remediation

Implement instructions on facilitating fee withdrawal.

Patch

Fixed in PR#112 by adding an instruction for the lending market owner to withdraw funds from the fee
vault.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/112


05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-KAMI-SUG-00 Utilize a two-step verification process to confirm a change in ownership.

OS-KAMI-SUG-01 Removal of redundant checks to improve code readability and efficiency.

OS-KAMI-SUG-02 Time-weighted average price calculation in pyth and scope is unnecessary.

OS-KAMI-SUG-03 Repetitive code in switchboard::get_switchboard_price and
scope::get_price_usd.

OS-KAMI-SUG-04 An incorrect constant is utilized in utils/prices/mod.rs.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 29



Kamino Finance Audit 05 | General Findings

OS-KAMI-SUG-00 | Double Verification For Owner Change

Description

In handler_update_lending_market::process, the owner of the lending market is updated
viaUpdateLendingMarketMode. However, the owner change is currently a single-step process; there
is no confirmation step. Once the transaction is submitted, the owner change is irreversible. This may
result in a denial of servicewhen the current owner accidentally sends an unintended input as a parameter
while executing an owner change.

handler_update_lending_market.rs RUST

pub fn process(
ctx: Context<UpdateLendingMarket>,
mode: u64,
value: [u8; VALUE_BYTE_ARRAY_LEN_MARKET],

) -> Result<()> {
let mode = UpdateLendingMarketMode::try_from(mode)

.map_err(|_| ProgramError::InvalidInstructionData)?;

let market = &mut ctx.accounts.lending_market.load_mut()?;

match mode {
UpdateLendingMarketMode::UpdateOwner => {

let value: [u8; 32] = value[0..32].try_into().unwrap();
let value = Pubkey::from(value);
market.lending_market_owner = value;
msg!("Value is {:?}", value);

}
[...]

}
[...]

}

Remediation

Utilize a two-step process to change the owner of the lending market.

Patch

Fixed in PR#111 by utilizing a two-step process to change the owner.

© 2023 Otter Audits LLC. All Rights Reserved. 21 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/111


Kamino Finance Audit 05 | General Findings

OS-KAMI-SUG-01 | Removal Of Redundant And Unused Code

Description

The following suggestions are regarding the removal of redundant checks andunused code in thekamino-
lending code base:

1. There are numerous redundant checks within lending_checks, as well as redundant PDA vali-
dation checks related to lendingmarket authority. These validations are already conducted once by
the anchor in the instruction definition and are explicitly executed in lending_checks.

2. In UpdateInsuranceFundDepositor instruction, given that the
insurance_fund_depositor account is not utilizing init_if_needed, it is unnecessary
to execute load_init on it and subsequently handle errors to employ load_mut. Instead,
load_mutmay be directly employed.

3. In the SocializeLoss instruction, the reserve_destination_liquidity account
passed to it seems unused andmay be removed.

Remediation

Ensure to remove the redundant checks within lending_checks as well as any redundant PDA valida-
tion checks, and in UpdateInsuranceFundDepositor, load_mutmay be directly employed since
insurance_fund_depositor account is not utilizing init_if_needed. Additionally, remove the
reserve_destination_liquidity account from the SocializeLoss instruction.

Patch

Fixed in PR#113 by removing all the redundant checks.

© 2023 Otter Audits LLC. All Rights Reserved. 22 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/113


Kamino Finance Audit 05 | General Findings

OS-KAMI-SUG-02 | Unnecessary Conditional Calculation

Description

In pyth and scope, the time-weighted average price calculation persists even when the
token_info.is_twap_enabled() condition evaluates to false. This behavior appears to be un-
necessary and may result in computational overhead. This occurs as currently there is no mechanism
implemented in get_pyth_price_and_twap and get_scope_price_and_twap to evaluate if
only the price or both price and the time-weighted average price must be calculated.

pyth.rs & scope.rs RUST

pub(super) fn get_pyth_price_and_twap(
pyth_price_info: &AccountInfo,

) -> Result<TimestampedPriceWithTwap> {
[...]
let price = price_feed.get_price_unchecked();
let twap = price_feed.get_ema_price_unchecked();
[...]
Ok(TimestampedPriceWithTwap {

price: price.into(),
twap: Some(twap.into()),

})
}

pub(super) fn get_scope_price_and_twap(
scope_price_account: &AccountInfo,
conf: &ScopeConfiguration,

) -> Result<TimestampedPriceWithTwap> {
let scope_prices = get_price_account(scope_price_account)?;
let price = get_price_usd(&scope_prices, conf.price_chain)?;
let twap = if conf.has_twap() {

get_price_usd(&scope_prices, conf.twap_chain)
.map_err(|e| msg!("No valid twap found for scope price, error: {:?}",

e))↪→

.ok()
}
[...]
Ok(TimestampedPriceWithTwap { price, twap })

}

Remediation

Utilize the boolean value obtained from the token_info.is_twap_enabled() check as an argu-
ment in get_pyth_price_and_twap and get_scope_price_and_twap, within the
get_most_recent_price_and_twap function. This approach would allow for conditional time-
weighted average price calculation, thereby reducing computational overhead when it is not enabled for
the token.

© 2023 Otter Audits LLC. All Rights Reserved. 23 / 29



Kamino Finance Audit 05 | General Findings

Patch

Fixed in PR#112 by lazy loading the twap price only if it is enabled in the config.

© 2023 Otter Audits LLC. All Rights Reserved. 24 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/112


Kamino Finance Audit 05 | General Findings

OS-KAMI-SUG-03 | Code Repetition

Description

In switchboard::get_switchboard_price, the code segment responsible for converting the
price to decimal may be substituted with the utilization of the pre-existing
utils::price_to_decimal, eliminating repetitive code. This same optimization may also be im-
plemented in scope::get_price_usd.

switchboard.rs & scope.rs RUST

fn get_switchboard_price(
switchboard_feed_info: &AccountInfo

) -> Result<TimestampedPrice> {
let price_load = Box::new(move || {

[...]
Ok(Decimal::from_scaled_val(scaled_value))

});
}

fn get_price_usd(
scope_prices: &ScopePrices,
tokens_chain: ScopeConversionChain,

) -> Result<TimestampedPrice> {
let price_load = Box::new(move || {

[...]
Ok(Decimal::from_scaled_val(scaled_value))

});
}

Remediation

Eliminate the repetitive code blocks utilizing utils::price_to_decimal to adhere to best coding
practices.

Patch

Fixed in PR#112 by using the same code block.

utils.rs RUST

/// Lossy conversion from Price to Decimal
///
/// Price is stored with n decimals, Decimal with 18 decimals.
/// If Price has more decimals than Decimal, the extra decimals are lost.
pub fn price_to_decimal(price: Price) -> Decimal {

// Decimal stored with fixed 18 decimals

© 2023 Otter Audits LLC. All Rights Reserved. 25 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/112


Kamino Finance Audit 05 | General Findings

// Scale price to match 18 decimals.
let scaled_value = to_scaled_normalized(&price, MAX_DECIMAL_EXPONENT.into());

Decimal::from_scaled_val(scaled_value)
}

© 2023 Otter Audits LLC. All Rights Reserved. 26 / 29



Kamino Finance Audit 05 | General Findings

OS-KAMI-SUG-04 | Incorrect Usage Of Constant

Description

In utils/prices/mod.rs, it is advisable to change the constant named
MIN_CONFIDENCE_PERCENTAGE to MAX_CONFIDENCE_PERCENTAGE, as this constant represents
the upper limit for the confidence percentage rather than the minimum value.

mod.rs RUST

/// validate price confidence - confidence/price ratio should be less than 2%
const MIN_CONFIDENCE_PERCENTAGE: u64 = 2u64;

/// Confidence factor is used to scale the confidence value to a value that can be
compared to the price.↪→

const CONFIDENCE_FACTOR: u64 = 100 / MIN_CONFIDENCE_PERCENTAGE;

Remediation

Replace MIN_CONFIDENCE_PERCENTAGEwith MAX_CONFIDENCE_PERCENTAGE.

Patch

Fixed in PR#112 by renaming the variable.

© 2023 Otter Audits LLC. All Rights Reserved. 27 / 29

https://github.com/hubbleprotocol/kamino-lending/pull/112


A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 28 / 29



B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 29 / 29


	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-KAMI-ADV-00 [high] | Elevation Group ID Mismatch
	OS-KAMI-ADV-01 [high] | Improper Checking Of Instruction Sequence
	OS-KAMI-ADV-02 [high] | Failure To Update Farm Admin
	OS-KAMI-ADV-03 [low] | Inconsistent Checks On Elevation Group
	OS-KAMI-ADV-04 [low] | Unchecked Mode Parameter
	OS-KAMI-ADV-05 [low] | Discrepancy In Elevation Group
	OS-KAMI-ADV-06 [low] | Inconsistent Calculation Of Max Withdraw Value
	OS-KAMI-ADV-07 [low] | Lack Of Withdraw Functionality

	General Findings
	OS-KAMI-SUG-00 | Double Verification For Owner Change
	OS-KAMI-SUG-01 | Removal Of Redundant And Unused Code
	OS-KAMI-SUG-02 | Unnecessary Conditional Calculation
	OS-KAMI-SUG-03 | Code Repetition
	OS-KAMI-SUG-04 | Incorrect Usage Of Constant

	Appendices
	Vulnerability Rating Scale
	Procedure


