
Kamino LIMO
Security Assessment

November 7th, 2024 — Prepared by OtterSec

Akash Gurugunti sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-KLO-ADV-00 | Permission Reuse in Orders 6

OS-KLO-ADV-01 | Failure to Verify Associated Token Accounts 7

General Findings 8

OS-KLO-SUG-00 | Double Verification For Admin Change 9

OS-KLO-SUG-01 | Code Maturity 10

Appendices

Vulnerability Rating Scale 11

Procedure 12

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 12

01 — Executive Summary

Overview

Kamino Finance engaged OtterSec to assess the limolimo program. This assessment was conducted

between October 25th and November 4th, 2024. For more information on our auditing methodology, refer

to Appendix B.

Key Findings

We produced 4 findings throughout this audit engagement.

In particular, we identified an issue concerning the lack of verification to ensure that the permission

account is unique to each order, creating a vulnerability where the same permission may be re-utilized

across multiple bids (OS-KLO-ADV-00), and the need to validate that all associated token account (ATA)

references (OS-KLO-ADV-01).

We also made recommendations to ensure adherence to coding best practices (OS-KLO-SUG-01) and

suggested utiutilizinglize a two-step verification process to confirm a change in the admin authority

(OS-KLO-SUG-00).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 12

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/Kamino-Finance/limo. This

audit was performed against commit 0f4e77e.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

limo
The system includes contracts defining the Kamino liquidity integration

and the matching orders decentralized finance protocol.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 12

https://github.com/Kamino-Finance/limo
https://github.com/Kamino-Finance/limo/commit/0f4e77e1f33ef3a4f1b85a8b90c7c84287c78e04

03 — Findings

Overall, we reported 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 1

MEDIUMMEDIUM 0

LOWLOW 1

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 12

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-KLO-ADV-00
HIGHHIGH RESOLVEDRESOLVED

TakeOrderTakeOrder and FlashTakeOrderFlashTakeOrder
lack verification to ensure that the

permissionpermission account is unique to each

orderorder , creating a vulnerability where

the same permission may be re-utilized

across multiple bids.

OS-KLO-ADV-01
LOWLOW RESOLVEDRESOLVED

The program does not validate that all as-

sociated token account (ATA) references,

especially maker_output_atamaker_output_ata , are le-
gitimate ATAs.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 12

Kamino LIMO Audit 04 — Vulnerabilities

Permission Reuse in Orders HIGHHIGH OS-KLO-ADV-00

Description

There is a lack of validation for the permissionpermission account against the orderorder account in both TakeOrderTakeOrder
and FlashTakeOrderFlashTakeOrder . Each TakeOrderTakeOrder or FlashTakeOrderFlashTakeOrder transaction is intended to be executed

with a specific order and associated permissionpermission account. Since there is no validation binding the

permissionpermission account directly to the orderorder , the same permissionpermission account may be misused with

multiple orders, enabling repeated utilization of a single permission credential across unrelated orders.

>_ programs/limo/src/handlers/flash_take_order.rs rust

#[account(mut,
has_one = global_config,
has_one = input_mint,
has_one = output_mint

)]
pub order: AccountLoader<'info, Order>,

/// CHECK: this is the permission key, checked by CPI to ExpressRelay program
pub permission: AccountInfo<'info>,

Remediation

Modify TakeOrderTakeOrder and FlashTakeOrderFlashTakeOrder to check that the permissionpermission account is explicitly

associated with the orderorder account before proceeding with any token transfers.

Patch

Fixed in PR#27.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 12

https://github.com/Kamino-Finance/limo/pull/27

Kamino LIMO Audit 04 — Vulnerabilities

Failure to Verify Associated Token Accounts LOWLOW OS-KLO-ADV-01

Description

In the current implementation it is assumed that accounts with names ending in *_ata*_ata , especially

maker_output_atamaker_output_ata , are indeed associated token accounts (ATAs) for specific tokens and owners,

without performing any explicit validation. This is especially important for the maker_output_atamaker_output_ata , as if
this account is not verified as an actual ATA for the specified maker and token, tokens intended for the

maker may instead be sent to any arbitrary account owned by them.

>_ programs/limo/src/handlers/flash_take_order.rs rust

#[account(mut,
token::mint = output_mint,
token::authority = maker

)]
pub maker_output_ata: Box<InterfaceAccount<'info, TokenAccount>>,

Remediation

Verify that each *_ata*_ata accounts are valid associated token accounts and are correctly linked to the

expected token mint and owner, preventing the diversion of assets to a non-designated account.

Patch

Fixed in PR#30.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 12

https://github.com/Kamino-Finance/limo/pull/30

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-KLO-SUG-00
Utilize a two-step verification process to confirm a change in the admin

authority.

OS-KLO-SUG-01
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 12

Kamino LIMO Audit 05 — General Findings

Double Verification For Admin Change OS-KLO-SUG-00

Description

The current process to change the global configuration admin authority is a simple single-step process;

there is no confirmation step. Once the transaction is submitted, the admin authority change is irreversible.

This may result in a denial of service if the current admin accidentally sends an unintended input as a

parameter while executing an admin change.

Remediation

Utilize a two-step process to change the global configuration admin authority.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 12

Kamino LIMO Audit 05 — General Findings

Code Maturity OS-KLO-SUG-01

Description

1. Deduplicate the code between the take_ordertake_order and flash_pay_order_outputflash_pay_order_output in operationsoperations
, to significantly improve maintainability and reduce redundancy. Since both functions share similar

logic for updating the order state, tip calculations, and handling the effects of the order, it is possible

to extract the common parts into a helper function, centralizing the duplicated logic.

2. To ensure consistency in operations::flash_withdraw_order_inputoperations::flash_withdraw_order_input , it would be appropriate
to check that order.is_flash_ixorder.is_flash_ix is equal to zero at the beginning of the function. This check

will verify that the function is only called when the order is not already involved in a flash operation.

>_ programs/limo/src/operations.rs rust

pub fn flash_withdraw_order_input(
order: &mut Order,
input_amount: u64,
output_amount: u64,

) -> Result<TakeOrderEffects> {
[...]
order.is_flash_ix = 1; // Within flash operation - everything besides flash_pay is

blocked↪→

Ok(TakeOrderEffects {
input_to_send_to_taker,
output_to_send_to_maker,

})
}

3. The system_programsystem_program account in UpdateGlobalConfigUpdateGlobalConfig instructions seems unnecessary and

may be removed.

4. From a design standpoint, it would be more appropriate to directly utilize

minimum_output_to_send_to_makerminimum_output_to_send_to_maker than to allow users to specify output_amountoutput_amount and

possibly overpay.

Remediation

Implement the above-mentioned suggestions.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 12

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 12

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 12

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-KLO-ADV-00 | Permission Reuse in Orders
	[8.75em][l]OS-KLO-ADV-01 | Failure to Verify Associated Token Accounts

	General Findings
	[8.75em][l]OS-KLO-SUG-00 | Double Verification For Admin Change
	[8.75em][l]OS-KLO-SUG-01 | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure

