
Audit
Openbook

Presented by:

OtterSec contact@osec.io

Akash Gurugunti sud0u53r.ak@osec.io

Thibault Marboud thibault@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:sud0u53r.ak@osec.io
mailto:thibault@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-OBK-ADV-00 [crit] | Missing Side Check On Market Vault Account 6
OS-OBK-ADV-01 [high] | Incorrect Check On Variance Value 8
OS-OBK-ADV-02 [med] | Proper Access Control Implementation 10
OS-OBK-ADV-03 [low] | Incorrect Variance Calculation . 11

05 General Findings 12
OS-OBK-SUG-00 | Potential Overflow Prevention . 13

Appendices

A Vulnerability Rating Scale 15

B Procedure 16

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 16

01 | Executive Summary

Overview
Openbook engaged OtterSec to perform an assessment of the openbook-v2 program. This assessment
was conducted between September 7th and September 20th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 5 findings in total.

In particular, we identified a critical vulnerability involving the instruction responsible for placing an order,
lacking checks to validate if the market vault matches the side of the order (OS-OBK-ADV-00). Additionally,
we highlighted the presence of a comparison error concerning the calculated variance and target variance
in the market module (OS-OBK-ADV-01).

We also recommended the possibility of an overflow due to utilizing the u64 type field in the market
structure (OS-OBK-SUG-00).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 16

02 | Scope
The source codewas delivered to us in a git repository at github.com/openbook-dex/openbook-v2/tree/au-
dit/programs/openbook-v2. This audit was performed against commit 840e661.

A brief description of the programs is as follows.

Name Description

openbook-v2 A central limit order book program, built upon the foundation of Mango v4 and the
former Openbook program, which had originated as a fork of Serum.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 16

https://github.com/openbook-dex/openbook-v2/tree/audit/programs/openbook-v2
https://github.com/openbook-dex/openbook-v2/tree/audit/programs/openbook-v2
https://github.com/openbook-dex/openbook-v2/tree/audit/programs/openbook-v2/840e661e539736378099056d33b51d4e5079687b

03 | Findings
Overall, we reported 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 1
High 1

Medium 1
Low 1

Informational 1

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 16

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-OBK-ADV-00 Critical Resolved place_order lacks any checks to validate if
market_vaultmatches the side of the order.

OS-OBK-ADV-01 High Resolved Comparison error concerning the calculated variance var
and target_var in the market.

OS-OBK-ADV-02 Medium Resolved Lack of checks to ensure close_authority is not set on
vault token accounts.

OS-OBK-ADV-03 Low Resolved target_var in oracle_price_from_a_and_b is de-
rived incorrectly.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 16

Openbook Audit 04 | Vulnerabilities

OS-OBK-ADV-00 [crit] | Missing Side Check On Market Vault Account

Description

The vulnerability is related to a potential mismatch between the side of an order and the market vault
utilized for depositing assets in place_order. place_order is responsible for validating and placing
a new order in a tradingmarket, ensuring the calculation of the required deposit amount, and transferring
assets between the trader’s account and the market’s vault.

instructions/place_holder.rs RUST

pub fn place_order(ctx: Context<PlaceOrder>, order: Order, limit: u8) ->
Result<Option<u128>> {↪→

require_gte!(order.max_base_lots, 0, OpenBookError::InvalidInputLots);
require_gte!(

order.max_quote_lots_including_fees,
0,
OpenBookError::InvalidInputLots

);

[...]

let mut market = ctx.accounts.market.load_mut()?;
// abscence of checks regarding side of the order.
require!(

!market.is_expired(clock.unix_timestamp),
OpenBookError::MarketHasExpired

);
[...]

}

It is crucial to ensure that the deposit and withdrawal of assets into and from amarket vault are consistent
with the side of the order, i.e., a bid or an ask order. The issue arises since there is no check to ensure that
themarket vault account utilized for depositing assets (ctx.accounts.market_vault) matches the
side of the order, as seen in the attached code snippet.

As a result, an attackermay place a bid order but use an ask-sidemarket vault for depositing assets (or vice
versa). This mismatch may result in the attacker draining funds from the market vault without providing
the expected assets in return. This imbalance in the market vault disrupts the fairness and integrity of the
trading system, resulting in financial losses for legitimate traders.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 16

Openbook Audit 04 | Vulnerabilities

Proof of Concept

1. Trader A places a legitimate bid order to buy one BTC and deposits 10,000 USD into themarket vault
(as expected for a bid order).

2. Trader B exploits the vulnerability by placing a bid order to buy one BTC but intentionally uses an
ask-side market vault (containing BTC) for depositing assets.

3. The attacker’s bid order is accepted due to the lack of a check to ensure that the market vault
matches the side of the order.

4. The attacker’s order executes, and they receive one BTC from Trader A’s legitimate order. However,
the attacker never deposited the expected USD into the market vault.

5. As a result, Trader A is left with 10,000 USD less in the market vault (as expected), but Trader B never
provided the expected USD. This imbalance leaves the market vault with less USD andmore BTC.

Remediation

Include checks that ensure the market vault utilized for depositing assets matches the side of the order. If
the sides do not match, the order should not be executed, and appropriate error handling should occur.

Patch

Fixed in 1b40b68.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 16

https://github.com/openbook-dex/openbook-v2/commit/1b40b6898f7fca130d47f74c66c8f3017d17753

Openbook Audit 04 | Vulnerabilities

OS-OBK-ADV-01 [high] | Incorrect Check On Variance Value

Description

In market::oracle_price_from_a_and_b, the target_var value indicates the target variance,
which is the upper bound for the permissible range of values for the variance. An issue arises when
comparing target_var and var in oracle_price_from_a_and_b.

market.rs RUST

fn oracle_price_from_a_and_b(
&self,
oracle_a_acc: &impl KeyedAccountReader,
oracle_b_acc: &impl KeyedAccountReader,
now_slot: u64,

) -> Result<Option<I80F48>> {
[...]

let (price, var) = oracle_a.combine_div_with_var(&oracle_b);
let target_var = self.oracle_config.conf_filter.powi(2);

if target_var > var {
msg!(

"Combined variance too high; value {}, target {}",
var,
target_var

);
Ok(None)

} else {
[...]

}
}

In the existing code, the condition target_var > var implies that if the calculated variance (var) is
less than the target variance (target_var), the function returns None. This means that if the actual
variance is less than the target variance, the function will not return an oracle price, even though it should.
Thus, the only scenario in which it will function without issues is when the variance value is incorrect. In
such a situation, users will receive an inaccurate price with a significant error, causing the resulting price
to deviate either above or below the actual asset price.

Remediation

Ensure that the calculated variance does not exceed the desired variance by modifying the condition to:
target_var <= var. This change will allow the function to return an oracle price when the actual
variance is less than or equal to the target variance, which is the correct behavior.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 16

Openbook Audit 04 | Vulnerabilities

Patch

Fixed in dad37aa.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 16

https://github.com/openbook-dex/openbook-v2/commit/dad37aaf02cd668b92b68d022982de41c5a34a16

Openbook Audit 04 | Vulnerabilities

OS-OBK-ADV-02 [med]| Proper Access Control Implementation

Description

The issue relates to the security and access control of market-related accounts, specifically
market_base_vault and market_quote_vault. These vault accounts store andmanage tokens
associated with the market and are expected to be controlled by certain authorities.

Currently,create_market does not explicitly check if theclose_market_admin is set as an author-
ity on the market_base_vault and market_quote_vault accounts. If a malicious actor sets the
close_market_admin as an authority on these vaults, they maymanipulate or drain the funds held
in those vaults, even if the market should be closed.

Remediation

Implement proper checks and make use of program-derived addresses as detailed below for better
security:

• Utilize ProgramDerived Addresses(PDAs) for vaults instead of creating vault accounts directly within
create_market, ensuring that the vault accounts are controlled solely by the program and
cannot have external authorities.

• When creating the market, the program may initialize the vaults with the appropriate data and
permissions. This includes setting the program itself as the authority and specifying other necessary
parameters.

• After creating the market and initializing the vaults, the program should explicitly check and ensure
that only authorized entities have the necessary authority over these vaults.

Patch

Fixed in 851eca8.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 16

https://github.com/openbook-dex/openbook-v2/commit/851eca88af0d52c1818254b0973b0d54acc5cb85

Openbook Audit 04 | Vulnerabilities

OS-OBK-ADV-03 [low] | Incorrect Variance Calculation

Description

In market, oracle_price_from_a_and_b combines prices from two oracle accounts (oracle_a
and oracle_b), checks for staleness and variance, and returns the adjusted and converted price if it
meets the criteria.

market.rs RUST

fn oracle_price_from_a_and_b(
&self,
oracle_a_acc: &impl KeyedAccountReader,
oracle_b_acc: &impl KeyedAccountReader,
now_slot: u64,

) -> Result<Option<I80F48>> {
[...]

let (price, var) = oracle_a.combine_div_with_var(&oracle_b);
let target_var = self.oracle_config.conf_filter.powi(2);

[...]
}

However, the problem lies in how the target_var is calculated in a composite oracle utilizing two
sources, oracle_a and oracle_b. target_var is calculated as
self.oracle_config.conf_filter.powi(2), and is intended to measure the maximum allow-
able variance.

Thus, while calculating target_var, only config_filter is considered the uncertainty; it does not
consider the (priceA / priceB)^2 factor, inaccurately calculating target_var, which may result
in unreasonable asset prices being passed to the user causing financial instability as the assets are traded
at incorrect prices due to a faulty oracle. This factor should be included to make the target variance
consistent with the single oracle case. Hence, it should be conf_filter * price for consistency
with the single oracle case.

Remediation

Omit (priceA / priceB)^2 on both sides of the equation to ensure proper calculation of
target_var.

Patch

Fixed in 44d7608.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 16

https://github.com/openbook-dex/openbook-v2/commit/44d7608d8e0749c5468f9d88d0a671bb72a4a971

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay lead to security issues in the future.

ID Description

OS-OBK-SUG-00 Modification of Market structure fields to mitigate any possibility of overflow.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 16

Openbook Audit 05 | General Findings

OS-OBK-SUG-00 | Potential Overflow Prevention

Description

The Market structure has several fields related to accounting for trading volumes and fees in a market.
These fields include:

• taker_volume_wo_oo.

• maker_volume.

• fees_accrued.

• fees_to_referrers.

The above fields are intended to keep track of various numeric values related to trading activities. However,
they are currently defined as u64. While this type is compatible with storing large numbers, in certain
situations, especially in highly active markets or over long periods of time, trading volumes and fees
may accumulate to a point where u64 is insufficient to represent these values accurately, resulting in a
potential integer overflow and the values becoming incorrect.

market.rs RUST

#[account(zero_copy)]
#[derive(Debug)]
pub struct Market {

[...]
/// Total fees accrued in native quote
pub fees_accrued: u64,
// Total fees settled in native quote
pub fees_to_referrers: u64,
// Total referrer rebates
pub referrer_rebates_accrued: u64,

// Fees generated and available to withdraw via sweep_fees
pub fees_available: u64,

/// Cumulative maker volume (same as taker volume) in quote native units
pub maker_volume: u64,

/// Cumulative taker volume in quote native units due to place take orders
pub taker_volume_wo_oo: u64,
[...]

}

Remediation

Utilize the u128 type, which provides a significantly larger range for these fields, greatly reducing the risk
of overflow.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 16

Openbook Audit 05 | General Findings

Patch

Fixed in 6808285.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 16

https://github.com/openbook-dex/openbook-v2/commit/6808285f7a73dd55d1ee32e9dce48f99f261a69e

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 16

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 16

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-OBK-ADV-00 [crit] | Missing Side Check On Market Vault Account
	OS-OBK-ADV-01 [high] | Incorrect Check On Variance Value
	OS-OBK-ADV-02 [med] | Proper Access Control Implementation
	OS-OBK-ADV-03 [low] | Incorrect Variance Calculation

	General Findings
	OS-OBK-SUG-00 | Potential Overflow Prevention

	Appendices
	Vulnerability Rating Scale
	Procedure

