
Orderly Network
Security Assessment

November 22nd, 2024 — Prepared by OtterSec

Akash Gurugunti sud0u53r.ak@osec.io

Nicholas R. Putra sud0u53r.ak@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

Findings 3

Vulnerabilities 4

OS-OLN-ADV-00 | Denial Of Service Due To Authority Change 5

General Findings 6

OS-OLN-SUG-00 | Enhancing Admin Transfer Process 7

OS-OLN-SUG-01 | Avoid Loss of Unexecuted Messages 8

OS-OLN-SUG-02 | Code Maturity 9

Appendices

Vulnerability Rating Scale 11

Procedure 12

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 12

01 — Executive Summary

Overview

Orderly Network engaged OtterSec to assess the soc-ccsoc-cc and solana-vaultsolana-vault programs. This

assessment was conducted between November 4th and November 14th, 2024. For more information on

our auditing methodology, refer to Appendix B.

Key Findings

We produced 4 findings throughout this audit engagement.

We also made recommendations to ensure adherence to coding best practices (OS-OLN-SUG-02) and

suggested enhancing the admin transfer process by utilizing a two-step verification process to confirm a

change in the admin authority and removing the TODOTODO comment (OS-OLN-SUG-00). We further advised

to restrict updates to the order delivery setting after deployment, to avoid the risk of losing unexecuted

messages when switching from unordered to ordered execution (OS-OLN-SUG-01).

Scope

The source code was delivered to us in a Git repository at https://github.com/OrderlyNetwork. This audit

was performed against commits d0bbdda and ee16d85.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

sol-cc
It sets up a connector to the Vault program deployed on Solana, built

on the LayerZero OApp framework with upgradeable settings.

solana-vault

It sets up Orderly’s Vault on the Solana, built on the LayerZero OApp/OFT

codebase within the Anchor framework. The Solana Vault is connected

to the Orderly chain via the LayerZero protocol.

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 12

https://github.com/OrderlyNetwork
https://github.com/OrderlyNetwork/sol-cc/commit/d0bbdda7ec3b9cdbcc2829d9852b9e86eac67c36
https://github.com/OrderlyNetwork/solana-vault/commit/ee16d85e0be72e0527ad8e630fd98b1dd0de52f5

02 — Findings

Overall, we reported 4 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 0

MEDIUMMEDIUM 1

LOWLOW 0

INFOINFO 3

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 12

03 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-OLN-ADV-00 MEDIUMMEDIUM RESOLVEDRESOLVED
User can change the authority of his ATA which could

cause DoS on an OApp with ordered delivery.

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 12

Orderly Network Audit 03 — Vulnerabilities

Denial Of Service Due To Authority Change MEDIUMMEDIUM OS-OLN-ADV-00

Description

In OAppLzReceiveOAppLzReceive instruction, the receiver_token_accountreceiver_token_account is used to send the tokens received

through LayerZero. The receiver_token_accountreceiver_token_account is the ATA for the receiverreceiver on token_minttoken_mint .

While transferring the received funds, an event is emitted instead of erroring out if the

receiver_token_accountreceiver_token_account is frozen, presumably to ensure the user is not able to fail the execution of

the instruction by freezing the token account.

>_ src/instructions/oappinstr/oapplzreceive.rs rust

if ctx.accounts.receiver_token_account.is_frozen() {
emit!(Into::<FrozenWithdrawn>::into(vault_withdraw_params.clone()));

} else {
transfer(

ctx.accounts
.transfer_token_ctx()
.with_signer(&[&vault_authority_seeds[..]]),

amount_to_transfer, // should be u64 here
)?;
emit!(Into::<VaultWithdrawn>::into(vault_withdraw_params.clone()));

}

Although, the user could change the authority of the receiver_token_accountreceiver_token_account to a different public

key other than receiverreceiver to make the instruction fail.

Remediation

Implement token tracking and a withdrawal function for the admin.

Patch

Resolved in 09c4980.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 12

https://github.com/OrderlyNetwork/solana-vault/commit/09c49801ab52cb419b11f8a610a76d6414be1b85

04 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-OLN-SUG-00
The admin transfer process may be enhanced for improved safety and func-

tionality.

OS-OLN-SUG-01
Allowing updates to the orderDeliveryorderDelivery setting after deployment risks losing

unexecuted messages when switching from unordered to ordered execution.

OS-OLN-SUG-02
Suggestions regarding inconsistencies in the codebase and ensuring adherence

to coding best practices.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 12

Orderly Network Audit 04 — General Findings

Enhancing Admin Transfer Process OS-OLN-SUG-00

Description

The current design in transferAdmintransferAdmin directly updates the adminadmin field in a single step, there is no

confirmation step. Once the transaction is submitted, the admin authority change is irreversible. This may

result in a denial of service if the current admin accidentally sends an unintended input as a parameter

while executing an admin change.

>_ instructions/oapp_instr/transfer_admin.rs rust

impl TransferAdmin<'_> {
pub fn apply(ctx: &mut Context<TransferAdmin>, params: &TransferAdminParams) -> Result<()> {

ctx.accounts.oapp_config.admin = params.admin;
// TODO:call endpoint to update delegate
Ok(())

}
}

Furthermore, the TODOTODO comment suggests calling an external endpoint to update the delegate associated

with the admin on the LayerZero endpoint program. However, the admin may not always serve as the

delegate because the delegate may be updated independently utilizing the SetDelegateSetDelegate instruction.

Remediation

Implement a two-step process for admin change, such that the new admin address is set in the first step

to initiate the transfer, and the new admin consequently confirms the transfer in the second step. Since

the admin can update the delegate later, updating the delegate here may not be necessary.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 12

Orderly Network Audit 04 — General Findings

Avoid Loss of Unexecuted Messages OS-OLN-SUG-01

Description

Restrict updates to the orderDeliveryorderDelivery flag after deployment to ensure that unexecuted messages

are not lost when switching from unordered to ordered execution. To prevent sending transactions while

the contract is in the process of transitioning the execution model, utilize pausepause from OpenZeppelin’s

PausablePausable contract, to freeze the sender contract.

Remediation

Incorporate the pausing functionality to freeze the contract.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 12

Orderly Network Audit 04 — General Findings

Code Maturity OS-OLN-SUG-02

Description

1. Within SetVaultSetVault instruction, when the signer is not the admin the

VaultError::InvalidVaultOwnerVaultError::InvalidVaultOwner error is utilized instead of OAppError::UnauthorizedOAppError::Unauthorized
when the oapp_configoapp_config account’s admin field does not match the admin signer. Utilize the

OAppError::UnauthorizedOAppError::Unauthorized error in this case for consistency and to avoid misunderstandings

about the cause of errors.

>_ instructions/vault_instr/set_vault.rs rust

pub struct SetVault<'info> {
#[account(mut)]
pub admin: Signer<'info>,
[...]
#[account(

seeds = [OAPP_SEED],
bump = oapp_config.bump,
has_one = admin @ VaultError::InvalidVaultOwner,

)]
pub oapp_config: Account<'info, OAppConfig>,

pub system_program: Program<'info, System>,
}

2. SetToken::applySetToken::apply assigns params.mint_accountparams.mint_account to allowed_token.mint_accountallowed_token.mint_account but

utilizes ctx.accounts.mint_account.decimalsctx.accounts.mint_account.decimals to set allowed_token.token_decimalsallowed_token.token_decimals ,

creating a potential inconsistency where the allowed_token.mint_accountallowed_token.mint_account does not match

the mintmint account from which the decimals are derived. Utilize ctx.accounts.mint_accountctx.accounts.mint_account
instead of params.mint_accountparams.mint_account when setting allowed_token.mint_accountallowed_token.mint_account .

>_ instructions/vault_instr/set_token.rs rust

pub fn apply(ctx: &mut Context<SetToken>, params: &SetTokenParams) -> Result<()> {
ctx.accounts.allowed_token.mint_account = params.mint_account;
ctx.accounts.allowed_token.token_hash = params.token_hash;
ctx.accounts.allowed_token.token_decimals = ctx.accounts.mint_account.decimals;
ctx.accounts.allowed_token.allowed = params.allowed;
[...]

}

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 12

Orderly Network Audit 04 — General Findings

3. To enhance safety, it would be appropriate to add a functions to withdraw excess fees from the

contract. This addresses the current flow where fees are topped up to the contract instead of paying

directly from the ledger, ensuring any excess funds may be removed and do not remain trapped

without a withdrawal mechanism.

4. Implement admin functions to close accounts, such as AllowedTokenAllowedToken and AllowedBrokerAllowedBroker , to
reclaim lamports from un-utilized accounts.

Remediation

Implement the above-mentioned suggestions.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 12

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 12

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 12

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	Vulnerabilities
	[8.75em][l]OS-OLN-ADV-00 | Denial Of Service Due To Authority Change

	General Findings
	[8.75em][l]OS-OLN-SUG-00 | Enhancing Admin Transfer Process
	[8.75em][l]OS-OLN-SUG-01 | Avoid Loss of Unexecuted Messages
	[8.75em][l]OS-OLN-SUG-02 | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure

