GO otterSec

Security Assessment

August 8th, 2024 — Prepared by OtterSec

Akash Gurugunti sudOu53r.ak@osec.io

Robert Chen r@osec.io

mailto:sud0u53r.ak@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary

Overview

Key Findings
Scope
Findings

Vulnerabilities

0S-SVB-ADV-00

0OS-SVB-ADV-01

0S-SVB-ADV-02

0OS-SVB-ADV-03

OS-SVB-ADV-04

0S-SVB-ADV-05

0S-SVB-ADV-06

0OS-SVB-ADV-07

0S-SVB-ADV-08

0S-SVB-ADV-09

OS-SVB-ADV-10

0S-SVB-ADV-11

0S-SVB-ADV-12

0OS-SVB-ADV-13

General Findings

0S-SVB-SUG-00

| Bypass Of Authority/Access Control Checks

| Failure To Add Delegation Pool To The Delegation Group
| Flawed Implementation of Reward Score Calculation

| Improper Account Utilization For Epoch Advancement

| Assignment Of Incorrect Reward Escrow

| Interruptions and Manipulations In RandomnessCommit
| Missing Oracle Checks In Pull Feed Instructions

| Failure To Include Offset Value In Signature Verification

| Ability To Update Signer Key

| Acceptance Of Expired Signatures From Expired Oracles
| Absence Of Oracle Account Validation

| Incorrect PDA Address Calculation

| Discrepancy In Account Type Handling

| Misalignment Of Implementation With Intended Approach

| Unsafe New Admin Assignment

© 2024 Otter Audits LLC. All Rights Reserved.

10

M

12

13

14

16

17

18

19

20

21

22

24

25

27

1/39

Switchboard Onchain Audit

TABLE OF CONTENTS

0S-SVB-SUG-01 | Misleading Error Logging 28
0S-SVB-SUG-02 | Inconsistencies In Garbage Collection Implementation 29
0S-SVB-SUG-03 | Denial Of Service On Exceeding LUT Limit 31
0S-SVB-SUG-04 | Code Refactoring 32
0S-SVB-SUG-05 | Code Maturity 34
0S-SVB-SUG-06 | Unutilized Code 35
0S-SVB-SUG-07 | Removal Of Unnecessary Code 36
0S-SVB-SUG-08 | Redundant/Unutilized Code 37

Appendices

Vulnerability Rating Scale 38

Procedure 39

© 2024 Otter Audits LLC. All Rights Reserved. 2/39

01— Executive Summary

Overview

Switchboard engaged OtterSec to assess the on-demand program. This assessment was conducted
between May 27th and August 8th, 2024. For more information on our auditing methodology, refer to
Appendix B.

Key Findings
We produced 23 findings throughout this audit engagement.

In particular, we identified several critical vulnerabilities, including the discarding of errors from authority
and access control checks, allowing unauthorized users to change permissions on any oracle or pull feed
account (OS-SVB-ADV-00).

Moreover, an oracle’s delegation pool is not added to its corresponding delegation group within the
program state, which prevents proper epoch advancement and reward distribution (OS-SVB-ADV-01).

We also made recommendations around modifications to the codebase for improved efficiency (OS-SVB-
SUG-04) and suggested the need to ensure adherence to coding best practices (0S-SVB-SUG-05).
Additionally, we advised the removal of unutilized and redundant code within the system for increased
readability (OS-SVB-SUG-06,0S-SVB-SUG-07), and recommended implementing a two-step process to
change the authority of the state, queue, oracle, and pull feed accounts (OS-SVB-SUG-00).

© 2024 Otter Audits LLC. All Rights Reserved. 3/39

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/switchboard-xyz/sbv3. This
audit was performed against commit 905f442.

A brief description of the programs is as follows:

Name Description

Built to support high-fidelity financial systems, where users can spec-
on-demand ify how data is ingested and transformed from on-chain or off-chain
sources.

© 2024 Otter Audits LLC. All Rights Reserved. 4/39

https://github.com/switchboard-xyz/sbv3
https://github.com/switchboard-xyz/sbv3/commit/905f442a4682f7a2b21f35667d72021511198d3c

03 — Findings

Overall, we reported 23 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will
aid in mitigating future vulnerabilities.

Severity

CRITICAL 1
HIGH 8
MEDIUM 2
LOW 3
INFO 9

© 2024 Otter Audits LLC. All Rights Reserved. 5/39

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

0OS-SVB-ADV-00

0S-SVB-ADV-01

0S-SVB-ADV-02

OS-SVB-ADV-03

0S-SVB-ADV-04

© 2024 Otter Audits LLC. All Rights Reserved.

Severity

CRITICAL

HIGH

HIGH

HIGH

HIGH

Status

RESOLVED ®

RESOLVED ®

RESOLVED ®

RESOLVED ©

RESOLVED ®

Description

derive_any_permissioned discards errors from
authority and access control checks, allowing unau-
thorized users to change permissions on any oracle
or pull feed account.

An oracle’s delegation pool is not added to its corre-
sponding delegation group within the program state,
preventing proper epoch advancement and reward
distribution.

The reward calculationin OracleHeartbeat allows
oracles to receive maximum rewards even with a zero
reward score, and oracles receive no reward if
their reward_score exceeds the slash_score.

OracleHeartbeat instruction passes the wrong

account (oracle instead of oracle_stats) to
DelegationPoolCpi: :advance_epoch , resulting
in incorrect epoch advancement.

maybe_execute_stake_rewards utilizes the wrong
reward escrow account in the OracleHeartbeat
instruction’s reward distribution logic.

6/39

Switchboard Onchain Audit

0S-SVB-ADV-05

OS-SVB-ADV-06

OS-SVB-ADV-07

OS-SVB-ADV-08

0OS-SVB-ADV-09

0S-SVB-ADV-10

OS-SVB-ADV-11

© 2024 Otter Audits LLC. All Rights Reserved.

HIGH

HIGH

HIGH

HIGH

MEDIUM

MEDIUM

LOW

RESOLVED ®

RESOLVED ®

RESOLVED ©®

RESOLVED ®

RESOLVED ©®

RESOLVED ®

RESOLVED ®

04 — Vulnerabilities

Malicious users may disrupt genuine users by repeat-
edly calling the commit instruction. There is also a risk
of manipulating outcomes by calling commit, fetching
signatures, and revealing until a desired outcome is
achieved.

The pull feed instructions expect responses from ora-
cles that are part of the same queue as the pull feed
being updated. They update the oracles with a new
heartbeat timestamp regardless of whether their sub-
missions are valid.

PullFeedSubmitResponseV2 and
PullFeedSubmitResponse instruction does
not verify the offset field in oracle signatures,
allowing users to set it arbitrarily.

The OracleSetConfigs instruction allows the ora-
cle authority to change the secp256kl_signer key,
undermining the integrity of the verification process,
as the updated key may invalidate previous verifica-
tions.

In the RandomnessReveal instruction, the validity
of the secp256k1 key is not checked against the cur-
rent timestamp. This oversight allows signatures from
expired oracles to be utilized.

The RandomnessCommit instruction does not ensure
that the oracle account passed is the same as the
oracle key storedin randomness.oracle.

Oraclelnit utilizes the
address_lookup_table_program instead of
the stake_program as the program ID when finding
the PDA address for the delegation_group .

7139

Switchboard Onchain Audit

0S-SVB-ADV-12 LOW

0S-SVB-ADV-13 LOW

© 2024 Otter Audits LLC. All Rights Reserved.

RESOLVED ®

RESOLVED ®

04 — Vulnerabilities

parse_remaining_accounts continues iterating
after adding accounts to the other_accounts list,
throwing an error when this account is incorrectly
processed as oracle stats account.

Incorrect error handling in the
QueueInitDelegationGroup instruction due
to error propagation.

8/39

Switchboard Onchain Audit 04 — Vulnerabilities

Bypass Of Authority/Access Control Checks [CRITICAL 0S-SVB-ADV-00

Description

The vulnerability in PermissionSet instruction arises from how errors are handled within
derive_any_permissioned. derive_any_permissioned calls

derive_permissioned: :<OracleAccountData, _> and

derive_permissioned: :<PullFeedAccountData, _> , but it immediately discards any errors via
ok() .

>_ permission/permission_set_action.rs

fn derive_any_permissioned<'a, F>(account: &'a AccountInfo<'a>, f: F) -> Result<()>
where
F: Fn(&mut dyn Permissioned) -> Result<()>,
{
derive_permissioned: :<OracleAccountData, _>(account, &f).ok();
derive_permissioned: :<PullFeedAccountData, _>(account, &f).ok();

Ok(())

In the closure passed to derive_any_permissioned , checks on the granter’s authority and access
control checks are performed. However, since any errors from derive_any_permissioned are discarded,
these checks may be bypassed. As a result, any entity may change permissions on any oracle or pull feed
account. This will result in unauthorized entities gaining control over oracles and pull feeds, compromising
the system’s integrity and security.

Remediation

Ensure the errors are not discarded in derive_any_permissioned . Instead, they should be properly
propagated back to the caller.

Patch

Resolved in 6ed294e.

© 2024 Otter Audits LLC. All Rights Reserved. 9/39

https://github.com/switchboard-xyz/sbv3/commit/6ed294ecf66b938ebeb8a3f200a7d66764607e6a

Switchboard Onchain Audit 04 — Vulnerabilities

Failure To Add Delegation Pool To The Delegation Group HIGH 0S-SVB-ADV-01

Description

The delegation pool of an oracle is currently not added to the delegation group of its queue within the
program state. The delegation group tracks epochs and is crucial for managing epoch-based operations
such as reward distribution. If an oracle’s delegation pool is not linked to its delegation group, it will
prevent the delegation group from advancing epochs as expected. Since epoch advancement is directly
tied to reward distribution mechanisms, it also prevents reward distribution in the OracleHeartbeat
instruction.

Remediation

Ensure to add the delegation pool of an oracle to the delegation group of in its queue.

Patch

Resolved in f3a0733.

© 2024 Otter Audits LLC. All Rights Reserved. 10/ 39

https://github.com/switchboard-xyz/sbv3/commit/f3a073316174d5d30ff62737024a2de361e3c3e6

Switchboard Onchain Audit 04 — Vulnerabilities

Flawed Implementation of Reward Score Calculation HiGH 0S-SVB-ADV-02

Description

The vulnerability in the OracleHeartbeat instruction stems from the incorrect design of the reward
calculation, specifically in the way it handles the relationship between reward_score and slash_score
. The current implementation of the formula for reward calculation is such that the final reward is
proportional to slash_score and inversely proportional to reward_score . This is counterintuitive zx
a higher slash_score should result in a lower reward , but instead, it increases the reward .

>_ oracle/oracle_heartbeat_action.rs

pub fn calculate_slash(stats: &OracleStatsAccountData, reward: u64) -> u64 {
let slash_score = stats.finalized_epoch.slash_score;
if slash_score == 0 {
return 0;

}

let reward_score = stats.finalized_epoch.reward_score;

Decimal::from(reward)
.saturating_mul(reward_score.into())
.checked_div(slash_score.into())
.unwrap()

.to_u64()
.unwrap_or (0)

As a result, Oracles that are supposed to be penalized (with a high slash_score) will end up receiving
higher rewards, which is the opposite of the intended effect. Furthermore, If reward_score = 0, the
formula simplifiesto reward = reward. Thisimplies the oracle would receive the maximum reward even
if it did not perform any attestations, which is a severe flaw. Ideally, an oracle with reward_score = 0
should receive no reward , as it indicates a complete lack of participation. Thus, Malicious oracles may
exploit this flaw by not performing any attestations (resulting in reward_score = 0) and still receive
full rewards, compromising the security and reliability of the entire network.

Remediation

Update the rewards calcualtion to ensure that to ensure that a higher reward_score results in a higher
reward , and a higher

Patch

Resolved in bb597ec.

© 2024 Otter Audits LLC. All Rights Reserved. 11/39

https://github.com/switchboard-xyz/sbv3/commit/bb597ec8430be227c3fcd91ffc0f42190d6d54ae

Switchboard Onchain Audit 04 — Vulnerabilities

Improper Account Utilization For Epoch Advancement HiGH 0S-SVB-ADV-03

Description

In OracleHeartbeat , actuate calls advance_epoch to synchronize epoch advancements and

related state changes across the program accounts involved in staking and delegation. However, the
oracle accountis passed as an argument to advance_epoch

(ctx.accounts.oracle.to_account_info()) instead of the oracle_stats account.

>_ oracle/oracle_heartbeat_action.rs

pub fn actuate(
ctx: &Context<Self>,
params: &OracleHeartbeatParams,
remaining_accounts: &RemainingAccounts<'info>,
) —> Result<()> {
[oool

let advance_epoch_res = DelegationPoolCpi::advance_epoch(

ctx.accounts.stake_program.to_account_info(),
ctx.accounts.delegation_pool.to_account_info(),
ctx.accounts.queue_escrow.to_account_info(),
ctx.accounts.queue.to_account_info(),
ctx.accounts.delegation_group.to_account_info(),
ctx.accounts.oracle.to_account_info(),

advance_epoch expects to update and synchronize epoch-related state information. By passing
ctx.accounts.oracle instead of ctx.accounts.oracle_stats, the wrong current_epoch.1id
will be considered in the staking program, resulting in incorrect epoch transitions and misallocation of
rewards intended for specific epochs.

Remediation

Ensure to pass the oracle_stats accountto advance_epoch.

Patch

Resolved in 6ed294e.

© 2024 Otter Audits LLC. All Rights Reserved. 12/ 39

https://github.com/switchboard-xyz/sbv3/commit/6ed294ecf66b938ebeb8a3f200a7d66764607e6a

Switchboard Onchain Audit 04 — Vulnerabilities

Assignment Of Incorrect Reward Escrow HiGH OS-SVB-ADV-04

Description

The vulnerability in maybe_execute_stake_rewards in OracleHeartbeat instruction arises from
the incorrect utilization of remaining_accounts.oracle_switch_reward_escrow as
oracle_wsol_reward_escrow for distributing rewards.
remaining_accounts.oracle_wsol_reward_escrow is the correct account that should be utilized.
Thus, due to the utilization of an incorrect rewards escrow, the oracle’s WSOL reward escrow will fail to
set up properly, and no funds will be transferred, affecting reward distribution.

>_ oracle/oracle_heartbeat_action.rs

pub fn maybe_execute_stake_rewards(
[...]
) —> Result<()> {
[...]
if let Some(oracle_wsol_reward_escrow) = &remaining_accounts.oracle_switch_reward_escrow {
let res = NativeEscrow::spl_transfer(
&ctx.accounts.token_program,
&ctx.accounts.queue_escrow.to_account_info(),
&oracle_wsol_reward_escrow.to_account_info(),

&ctx.accounts.program_state.to_account_info(),
&[&[STATE_SEED, &[state.bump]]],
std::cmp::min(
reward.saturating_sub(slash),
oracle_wsol_reward_escrow.amount,

)

Remediation

Ensure oracle_wsol_reward_escrow is remaining_accounts.oracle_wsol_reward_escrow
instead of remaining_accounts.oracle_switch_reward_escrow in

maybe_execute_stake_rewards.

Patch

Resolved in c156b82.

© 2024 Otter Audits LLC. All Rights Reserved. 13 /39

https://github.com/switchboard-xyz/sbv3/commit/c156b8254b0d5201263c3e3875f77094e71a1172

Switchboard Onchain Audit 04 — Vulnerabilities

Interruptions and Manipulations In RandomnessCommit HIGH 0S-SVB-ADV-05

Description

The RandomnessCommit instruction may be called by anyone and executed multiple times. This opens
up the possibility for a malicious user to disrupt the process for a genuine user. When a genuine user
initiates a coin flip and commits randomness, they expect to utilize the oracle’s slot and slothash
for their reveal. A malicious user may repeatedly call the RandomnessCommit instruction between the
genuine user’'s commit and reveal instructions.

>_ src/lib.rs

pub fn randomness_commit<'a> (
mut ctx: Ctx<'_, 'a, RandomnessCommit<'a>>,

params: RandomnessCommitParams,
) —> Result<()> {
RandomnessCommit::actuate(&mut ctx, ¶ms)

}

Consequently, the randomness.oracle, randomness.seed_slot,and randomness.seed_slothash
values will be updated to the latest values. As a result, the genuine user would need to fetch a new
signature from the latest oracle with the latest slot and slothash , invalidating their process.

Additionally, there is another potential vulnerability where a user may manipulate the system to generate
a favorable random value. Before calling the reveal instruction, the user may repeatedly call commit, fetch
signature, and reveal instructions until a favorable random value is generated, enabling the user to call the
settle flip instruction with the favorable random value.

Remediation

Restrict any calls to the RandomnessCommit instruction if it has already been committed and has not
yet been revealed. This ensures that once a commit has been made, no further commits can alter the
randomness until it has been revealed.

Additionally, the program utilizing the randomness for the coin flip should store the
randomness.seed_slot during the coin flip and verify it against randomness.seed_slot during the
settle flip. This ensures that the randomness during the settle flip matches the randomness committed
during the coin flip, preventing any manipulation by repeatedly committing and revealing.

© 2024 Otter Audits LLC. All Rights Reserved. 14 /39

Switchboard Onchain Audit 04 — Vulnerabilities

Patch

1. Resolved in 9187d5c by restricting the calls to RandomnessCommit instruction as suggested.

2. The suggestion for storing the seed slot was acknowledged by the switchboard team, who stated
that this should be done on the consumer programs.

© 2024 Otter Audits LLC. All Rights Reserved. 15/ 39

https://github.com/switchboard-xyz/sbv3/commit/9187d5c461eea092c6dfa6849362e58666e7d8b5

Switchboard Onchain Audit 04 — Vulnerabilities

Missing Oracle Checks In Pull Feed Instructions HicH 0S-SVB-ADV-06

Description

The PullFeedSubmitResponseV2, PullFeedSubmitResponse, PullFeedSubmitResponseMany ,

and PullFeedSubmitResponseManyV2 instructions expect responses from oracles that are part of the
same queue as the pull feed being updated. Oracles are associated with specific queues, and a pull feed'’s
integrity depends on responses from oracles within its designated queue. If the contracts do not enforce
that oracles must be from the same queue, it opens the door for oracles from other queues to submit
responses.

>_ pull_feed/pull_feed_submit_response_action_v2.rs

pub fn actuate(
ctx: &Context<'_, '_, 'info, 'info, PullFeedSubmitResponseV2<'info>>,
params: &PullFeedSubmitResponseParamsV2,
remaining_accounts: &RemainingAccounts<'info>,
to_execute: &[bool],
) —> Result<()> {
[...]
for (idx, submission) in params.submissions.iter().enumerate() {
let slot = params.slot - submission.offset as u64;
let oracle_loader = &remaining_accounts.oracles[idx];
if let Ok(mut oracle) = oracle_loader.load_mut() {
msg! ("Registering heartbeat for oracle {}", oracle_loader.key());
oracle.last_heartbeat = clock.unix_timestamp;

Furthermore, these instructions update the oracle.last_heartbeat even when the to_execute
flag for that oracle is set to false. Hence, by just passing the oracle in remaining_accounts , it would
be considered as a heartbeat even if the signature for the pull feed is not submitted.

Remediation

Ensure that the oracle submitting the response is a member of the same queue as the pull feed and
updates the heartbeat only when to_execute[idx] is true.

Patch

Fixed in a34b620.

© 2024 Otter Audits LLC. All Rights Reserved. 16/ 39

https://github.com/switchboard-xyz/sbv3/commit/a34b62019adf674bc035cd026a1e21052c24eee9

Switchboard Onchain Audit 04 — Vulnerabilities

Failure To Include Offset Value In Signature Verification HiGH 0S-SVB-ADV-07

Description

Inthe PullFeedSubmitResponseV2 and PullFeedSubmitResponse instructions, the offset field

is not verified in the oracle signature verification. Since the offset is controlled by the user and not
verified, an attacker may set the offset to a value that retrieves a price from a much earlier slot. This
allows an attacker to submit a response that appears to be from a different time than the one actually
signed by the oracle, undermining the data integrity.

Remediation

Incorporate the offset into the message hash used for signature verification or remove it completely.

Patch

Fixed in a34b620.

© 2024 Otter Audits LLC. All Rights Reserved. 17 1 39

https://github.com/switchboard-xyz/sbv3/commit/a34b62019adf674bc035cd026a1e21052c24eee9

Switchboard Onchain Audit 04 — Vulnerabilities

Ability To Update Signer Key HicH 0S-SVB-ADV-08

Description

In the OracleSetConfigs instruction, the oracle authority may change the secp256kl_signer of
the enclave after verification. The secp256kl_signer key is utilized to verify that the signature on the

quote (or any related data) is valid and was generated by an authorized party. The secp256kl_signer
key must match the key used during the signing of quotes to ensure the integrity and authenticity of
the oracle’s data. The ability to update the secp256kl_signer key undermines the quote verification,
which includes this key as one of the parameters.

Remediation

Disallow this functionality.

Patch

Resolved in 0109ad4.

© 2024 Otter Audits LLC. All Rights Reserved. 18 /39

https://github.com/switchboard-xyz/sbv3/commit/0109ad40092d6f784fbc89d7f34fb01cf7e03d99

Switchboard Onchain Audit 04 — Vulnerabilities

Acceptance Of Expired Signatures From Expired Oracles MEDIUM (OS-SVB-ADV-09

Description

When the RandomnessReveal instruction is invoked, it utilizes a signature generated by an oracle.
However, if the validity of the oracle’s secp256k1 key is not checked against the current timestamp, the
system may accept signatures from expired oracles. This allows an expired oracle, which should no longer
be part of the randomness generation process, to influence the outcome, undermining the integrity and
security of the randomness generation process.

Remediation

Ensure that the secp256k1 expiration value of the oracle’s key is greater than the current timestamp. If the
key is expired, the instruction should reject the signature and not proceed with the randomness reveal.

Patch

This issue was acknowledged by the switchboard team

© 2024 Otter Audits LLC. All Rights Reserved. 19/ 39

Switchboard Onchain Audit 04 — Vulnerabilities

Absence Of Oracle Account Validation MEebium 0S-SVB-ADV-10

Description

In the current implementation, RandomnessCommit instruction takes an oracle account as a parameter
and also references an oracle key stored in the randomness account. However, there is no explicit
check to ensure that the passed oracle account corresponds to the oracle key stored in the
randomness account. The oracle account passed to the instruction may be different from the oracle
key stored in randomness.oracle . This inconsistency may result in a situation where the data in the
randomness account does not match the oracle data being utilized, potentially resulting in incorrect
randomness commitments.

>_ randomness/randomness_commit_action.rs

pub fn validate(&self, ctx: &Context<Self>, _params: &RandomnessCommitParams) -> Result<()> {
let queue = ctx.accounts.queue.load()?;
if queue.oracle_keys_len == 0 {
return Err(SwitchboardError::QueuelsEmpty.into());
1

let oracle = ctx.accounts.oracle.load()?;

if oracle.enclave.verification_status == VerificationStatus::VerificationSuccess as u8 {

if oracle.enclave.valid_until < Clock::get()?.unix_timestamp + 3600 {
return Err(SwitchboardError::RandomnessOracleKeyExpired.into());

ks
} else {

return Err(SwitchboardError::InvalidQuote.into());
}

Ok (())

Remediation

Add a check to ensure that the oracle account passed to the instruction matches the oracle key
stored in the randomness account. If the design is intentionally not to enforce that the oracle account
matches the randomness.oracle key, then storing the oracle key inthe randomness account

becomes redundant. Instead, the instruction should explicitly check that the oracle is present in the
queue.oracle_keys .

Patch

Resolved in bb597ec.

© 2024 Otter Audits LLC. All Rights Reserved. 20/ 39

https://github.com/switchboard-xyz/sbv3/commit/bb597ec8430be227c3fcd91ffc0f42190d6d54ae

Switchboard Onchain Audit 04 — Vulnerabilities

Incorrect PDA Address Calculation Low 0S-SVB-ADV-11

Description

Within OraclelInit instruction in actuate , Pubkey::find_program_address is utilized to

derive the delegation group program-derived address (PDA). The second parameter to this function
should be the program ID of the program that will manage the program-derived address. However,
&ctx.accounts.address_lookup_table_program.key() is incorrectly utilized as the program ID.

The correct program ID should be &ctx.accounts.stake_program.key() . Consequently, the dele-
gation group address stored on the address lookup table will be different than the intended one.

Remediation

Ensure that the program-derived address is derived utilizing
&ctx.accounts.stake_program.key() .

Patch

Resolved in 6ed294e.

© 2024 Otter Audits LLC. All Rights Reserved. 21/ 39

https://github.com/switchboard-xyz/sbv3/commit/6ed294ecf66b938ebeb8a3f200a7d66764607e6a

Switchboard Onchain Audit 04 — Vulnerabilities

Discrepancy In Account Type Handling Low 0S-SVB-ADV-12

Description

Inthe PullFeedSubmitResponse instructions, thereis a vulnerability in parse_remaining_accounts
concerning the improper handling of accounts that are neither oracles accounts nor oracle_stats
accounts. While parsing the remaining accounts in parse_remaining_accounts , oracle accounts and

oracle stats accounts are added to their respective vectors. If an account is neither an oracle account nor
an oracle stats account, it is added to the other_accounts hashmap.

>_ pull_feed/pull_feed_submit_response_action.rs

pub fn parse_remaining_accounts(
ctx: &Context<'_, '_, 'info, 'info, PullFeedSubmitResponse<'info>>,
) —> Result<RemainingAccounts<'info>> {
let mut oracles: Vec<AccountLoader<'info, OracleAccountData>> = Vec::new();
let mut oracle_stats: Vec<AccountLoader<'info, OracleStatsAccountData>> = Vec::new();
let mut other_accounts: HashMap<Pubkey, AccountInfo<'info>> = HashMap::new();
for accnt in ctx.remaining_accounts.iter() {
if let Ok(l) = AccountLoader::try_from(accnt) {
oracles.push(l);
} else {
1[...]
if maybe_stats_loader.is_err() {
msg! ("Unknown account type {}", accnt.key());
other_accounts.insert(accnt.key(), accnt.clone());
}
let stats_loader = maybe_stats_loader?;

Looo]

However, after adding this account to the other_accounts listin the for loop, the loop execu-
tion continues without skipping further processing for this account. Consequently, on the next line (
maybe_stats_loader?), an error will be thrown since maybe_stats_Tloader isan Err , and calling

? on it will result in an error. This error is unintended because the account should have been handled as
an other_account and not processed further in the current iteration of the loop.

© 2024 Otter Audits LLC. All Rights Reserved. 22 /39

Switchboard Onchain Audit 04 — Vulnerabilities

Remediation

Modify the loop in PullFeedSubmitResponseV2, PullFeedSubmitResponse,
PullFeedSubmitResponseMany , and PullFeedSubmitResponseManyV2 instructions by adding a

continue statement after inserting the account into other_accounts to skip the rest of the loop for
non-oracle and non-stats accounts.

Patch

Resolved in c156b82.

© 2024 Otter Audits LLC. All Rights Reserved. 23/39

https://github.com/switchboard-xyz/sbv3/commit/c156b8254b0d5201263c3e3875f77094e71a1172

Switchboard Onchain Audit 04 — Vulnerabilities

Misalignment Of Implementation With Intended Approach Low 0s-SvB-ADV-13

Description

In the QueuelnitDelegationGroup instruction, the comment for DelegationGroupCpi::init_cpi
indicates an intention to allow the function to continue execution even if an error occurs during the call
(failing open). This implies that even if the initialization of the delegation group fails, the subsequent steps
(extending the LUT) will still be executed. However, the current implementation does not achieve this
because it propagates the error by utilizing the ? operator.

>_ queue/queue_init_delegation_group_action.rs

pub fn actuate(ctx: &Context<Self>, _params: &QueueInitDelegationGroupParams) -> Result<()> {

[oool

DelegationGroupCpi::init_cpi(
ctx.accounts.stake_program.to_account_info(),
ctx.accounts.payer.to_account_info(),
ctx.accounts.program_state.to_account_info(),
ctx.accounts.delegation_group.to_account_info(),
ctx.accounts.stake_pool.to_account_info(),
ctx.accounts.system_program.to_account_info(),
&ctx.accounts.queue.key(),

[...]

Remediation

Ensure the error from DelegationGroupCpi::init_cpi is handled explicitly to achieve the intended
fail-open behavior, allowing the function to continue execution even if an error occurs.

Patch

Resolved in 6ed294e.

© 2024 Otter Audits LLC. All Rights Reserved. 24 [39

https://github.com/switchboard-xyz/sbv3/commit/6ed294ecf66b938ebeb8a3f200a7d66764607e6a

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

The pattern for the assignment of the new authority may result in the loss

0S-SVB-SUG-00 e
of control over specific accounts.

The message logged when DelegationPoolCpi::init_cpi fails sug-
0S-SVB-SUG-01 gests that the delegation pool already exists, which is incorrect and mis-
leading.

Highlighting inconsistencies in the garbage collection process within the

0S-SVB-SUG-02 OracleHeartbeat and QueueGarbageCollect instructions.
LutExtendCpi::invoke reverts in case the
0S-SVB-SUG-03 LOOKUP_TABLE_MAX_ADDRESSES limit is reached, resulting in a possible

denial-of-service scenario.

Recommendation for modifying the codebase for improved efficiency and

0S-SVB-SUG-04 . . . I
for inclusion of missing validations.

Suggestions regarding inconsistencies in the codebase and ensuring adher-

0S-SVB-SUG-05 .)
ence to coding best practices.

Multiple cases of dead or irrelevant code are present within the protocol,
which may be removed for improved clarity and readability.

0S-SVB-SUG-06

0S-SVB-SUG-07 Several unnecessary codes currently exist within the codebase.

There are numerous fields/accounts that are redundant or not utilized and
should be removed:

0S-SVB-SUG-08

© 2024 Otter Audits LLC. All Rights Reserved. 25/39

Switchboard Onchain Audit 05 — General Findings

© 2024 Otter Audits LLC. All Rights Reserved. 26 /39

Switchboard Onchain Audit 05 — General Findings

Unsafe New Admin Assignment 0S-SVB-SUG-00

Description

In the current implementation, it is possible to change the authority of the state, queue, oracle,

and pull_feed accounts in a single step. However, the program does not account for mistyping the
new authority address. Not handling this may result in losing control over these accounts if an incorrect
address is passed inadvertently. Given the significance of these accounts in the program, splitting this
authority update process into two distinct phases is advised.

Remediation
Divide changing the admin into two separate phases:

1. set_admin_address, signed by the current authority and utilized for setting the new authority.

2. update_new_authority , signed by the new admin address and utilized for updating the
authority of the account.

Patch

This issue was acknowledged by the switchboard team

© 2024 Otter Audits LLC. All Rights Reserved. 27 [39

Switchboard Onchain Audit 05 — General Findings

Misleading Error Logging 0S-SVB-SUG-01

Description

OracleUpdateDelegation instruction logs a message indicating that the delegation pool already exists
if DelegationPoolCpi::init_cpi returns an error. However, the function only throws an error if the
CPI (Cross-Program Invocation) fails for reasons other than the delegation pool already existing. This
implies that the logged message is misleading and does not accurately reflect the cause of the error. A
similar issue exists in RewardPoolCpi::init_cpi .

>_ oracle/oracle_heartbeat_action.rs

pub fn actuate(ctx: &Context<Self>, _params: &OracleUpdateDelegationParams) -> Result<()> {

[...]

let res = DelegationPoolCpi::init_cpi(
ctx.accounts.stake_program.to_account_info(),
ctx.accounts.payer.to_account_info(),
ctx.accounts.authority.to_account_info(),
ctx.accounts.oracle_stats.to_account_info(),
ctx.accounts.delegation_pool.to_account_info(),
ctx.accounts.stake_pool.to_account_info(),
ctx.accounts.system_program.to_account_info(),

)5
if res.is_err() {
msg! ("Delegation pool for this oracle already exists");

Remediation

Implement more specific error handling, making it more granular to provide specific log messages based
on the actual cause of the error.

Patch

The issue in DelegationPoolCpi::init_cpi was resolved in bb597ec.

© 2024 Otter Audits LLC. All Rights Reserved. 28 /39

https://github.com/switchboard-xyz/sbv3/commit/bb597ec8430be227c3fcd91ffc0f42190d6d54ae

Switchboard Onchain Audit 05 — General Findings

Inconsistencies In Garbage Collection Implementation 0S-SVB-SUG-02

Description

1. In the current implementation of OracleHeartbeat instruction, the insertion of the oracle
into the queue is attempted before performing garbage collection, as shown in code snippet of
OracleHeartbeat::actuate below. As aresult, the oracle_keys list may be full due to stale or
inactive oracles. This results in the rejection of an active oracle trying to insert itself into the queue,
even though space may be available after garbage collection.

>_ oracle/oracle_heartbeat_action.rs

pub fn actuate(
ctx: &Context<Self>,
params: &OracleHeartbeatParams,
remaining_accounts: &RemainingAccounts<'info>,
) => Result<()> {
[...]
if oracle.is_on_queue == 0 {
if queue.oracle_keys_len as usize == queue.oracle_keys.len() {
return Err(error! (SwitchboardError::QueueFull));
}
let queue_len = queue.oracle_keys_len as usize;
queue.oracle_keys[queue_len] = ctx.accounts.oracle.key();
queue.oracle_keys_len += 1;
oracle.is_on_queue = 1;
}
assert! (queue.oracle_keys_len != 0, "Queue is empty");
queue.curr_idx += 1;
queue.curr_idx %= queue.oracle_keys_len;

Foool

2. The garbage collection logic in OracleHeartbeat and QueueGarbageCollect instructions
determines the staleness of oracles utilizing different criteria, resulting in inconsistency. In the
OracleHeartbeat instruction, the staleness of an oracle is determined via the
queue.node_timeout , however, in the QueueGarbageCollect instruction, the staleness of an
oracle is determined via a constant MAX_STALE_SECONDS .

>_ oracle/oracle_heartbeat_action.rs

pub fn actuate(
ctx: &Context<Self>,

params: &OracleHeartbeatParams,
remaining_accounts: &RemainingAccounts<'info>,
) => Result<()> {

© 2024 Otter Audits LLC. All Rights Reserved. 29/39

Switchboard Onchain Audit 05 — General Findings

Loool

let gc_idx = queue.gc_idx as usize;
if ctx.accounts.oracle.key() != ctx.accounts.gc_node.key()
&& queue.try_garbage_collection(gc_idx, &clock, &ctx.accounts.gc_node)?

{
emit! (GarbageCollectionEvent {

oracle: ctx.accounts.gc_node.key(),
queue: ctx.accounts.queue.key(),

Remediation

1. Perform the garbage collection process before attempting to insert the oracle into the queue.

2. Ensure consistency in the staleness determination in QueueGarbageCollect and
OracleHeartbeat instructions. Allow garbage collection in QueueGarbageCollect instruction

only if the verification status of the oracle has expired, to be consistent with the garbage collection
inthe OracleHeartbeat instruction.

Patch

Resolved in ba65e19.

© 2024 Otter Audits LLC. All Rights Reserved. 30/39

https://github.com/switchboard-xyz/sbv3/commit/ba65e195c717525a4936462e7fffe1fcce00ed84

Switchboard Onchain Audit 05 — General Findings

Denial Of Service On Exceeding LUT Limit 0S-SVB-SUG-03

Description

Lookup address tables (LUTs) are utilized to efficiently manage mappings between addresses (rep-
resented as Pubkeys) and associated data or metadata. Each LUT has a defined maximum limit (
LOOKUP_TABLE_MAX_ADDRESSES) on the number of addresses it can accommodate. This limit is typically
set to prevent excessive resource consumption and to ensure efficient lookup operations. As there is
no way to change the lut_slot fields on the program accounts, reverting the operation when the
LOOKUP_TABLE_MAX_ADDRESSES Iimit is reached in LutExtendCpi::invoke will effectively resultin

a denial-of-service scenario.

Remediation

Instead of reverting, the recommended approach is to handle the situation gracefully when the limit is
reached.

© 2024 Otter Audits LLC. All Rights Reserved. 31/39

Switchboard Onchain Audit 05 — General Findings

Code Refactoring 0S-SVB-SUG-04

Description

1. Within Staker, next_delegation tracks the number of used slots in the delegations array. Ideally,
all slots from index zero to next_delegation - 1 should be filled with delegations or empty
slots marked by delegation_pool == Pubkey::default . find_delegation checks for
self.delegations[i].delegation_pool == Pubkey::default() toidentify the end of used

slots. However, the code does not explicitly throw an error if it encounters a Pubkey: :default()
value before next_delegation.

>_ staking/src/state/staker.rs

pub fn find_delegation(&self, delegation_pool: &Pubkey) -> Result<usize> {
for i in 0..self.next_delegation as usize {
if self.delegations[i].delegation_pool == Pubkey::default() {

break;
}
if self.delegations[i].delegation_pool == *delegation_pool {
return Ok(i);
}
ks

err! (ErrorCode: :DelegationNotFound)

2. vesting_entry does not explicitly check if params.periods is greater than zero when creating
anew VestingEntry . If params.periods is setto zero, the vesting end time will be equal to
the start time.

3. Currently, inthe OracleUpdateDelegation instruction, itis not checked that the queue account
represents the queue to which the oracle belongs. If the queue account does not match the oracle’s
queue account, it will result in incorrect entries in the lookup table.

4. maybe_execute_stake_rewards does not check whether state.subsidy_amount is zero

before proceeding with the subsidy transfer logic. Thus, even if there are no subsidies to transfer,
the function will still attempt to execute the transfer logic unnecessarily.

>_ oracle/oracle_heartbeat_action.rs

pub fn maybe_execute_stake_rewards(

ctx: &Context<Self>,
remaining_accounts: &RemainingAccounts<'info>,
state: &State,

© 2024 Otter Audits LLC. All Rights Reserved. 32/39

Switchboard Onchain Audit 05 — General Findings

stats: &OracleStatsAccountData,

oracle: &mut OracleAccountData,
) => Result<()> {

[...]

if state.enable_staking == 0 {

msg! ("Staking rewards disabled");
return Ok(());

Remediation

1. Throw an error when encountering
self.delegations[i].delegation_pool == Pubkey::default() before
next_delegation.

2. Check if params.periods > @ when creating a new VestingEntry .
3. Ensure queue accountin OracleUpdateDelegation instructionis equalto oracle.queue .

4. Add a check at the beginning of maybe_execute_stake_rewards to return early if
state.subsidy_amount is zero. This check ensures that the function proceeds with subsidy-
elated computations only when there is an actual subsidy amount to transfer.

Patch

1. Issue #3 resolved in 6ed294e.
2. Issue #5 resolved in f3a0733.

© 2024 Otter Audits LLC. All Rights Reserved. 33/39

https://github.com/switchboard-xyz/sbv3/commit/6ed294ecf66b938ebeb8a3f200a7d66764607e6a
https://github.com/switchboard-xyz/sbv3/commit/f3a073316174d5d30ff62737024a2de361e3c3e6

Switchboard Onchain Audit 05 — General Findings

Code Maturity 0S-SVB-SUG-05

Description

1. In initialize_stake_pool, use InitializeStakePoolParams within #[instruction(...)
instead of Pubkey .

>_ staking/src/instructions/initialize_stake_pool.rs

pub struct InitializeStakePool<'info> {

pub payer: Signer<'info>,

[ocol

2. Correct the typographical errors in the following areas:

(a) slash_score_current is spelled as slash_score_current in edit_oracle_data and
write_oracle_data.

(b) dnitialize_delegation_pool is spelled as 1initialize_delegation_pool in the file
name and in instructions/mod.rs .

(c) is_removable is spelled as is_removable in delegate_user_state.

(d) delinquency is spelled as delinquency in delegation_pool.

3. When disabling the oracle_heartbeat permission via PermissionSet instruction, the imple-
mentation should include steps to remove the oracle from queue.oracle_keys . Keeping disabled

oracles in queue.oracle_keys , which is meant for active oracles, will unnecessarily utilize space
and waste system resources.

4. Since pull_feed_1impl::standard_deviation calculates the squared difference, the result will
always be a non-negative value. Thus, the order of subtraction does not matter and the utilization of
min and max is not necessary since both are 1128 .

Remediation

Implement the above-mentioned suggestions.

Patch

Issue #3 was acknowledged by the switchboard team.

© 2024 Otter Audits LLC. All Rights Reserved. 34 /39

Switchboard Onchain Audit 05 — General Findings

Unutilized Code 0S-SVB-SUG-06
Description

1. idx field in GuardianQuoteVerifyParams is not utilized anywhere and may be removed.

2. In OracleHeartbeat instruction, the bump, owner ,and oracle fields on
OracleStatsAccountData do not need to be updated.

3. The owner and oracle fields on OracleStatsAccountData are the same and not changed
anywhere, so one of them may be removed.

4. The program_authority and state accountsinthe QueueAddMrEnclave and
QueueRemoveMrEnclave instructions, and the state accountin QueueSetConfigs seem
unnecessary and should be removed.

5. The QueueLutExtend instruction is defined but not utilized in the entrypoint program.

6. In StateInit instruction, the state.bump = ctx.bumps.state statementis repeated. Ensure
to remove the duplicate statement.

7. U192 is defined in math but not used.

8. The following accounts are passed to instructions unnecessarily and may be removed:

(a) owner and stake_mint in Stake instruction.
(b) owner in Grant instruction.
(c) registrar inthe UpdateVoterWeightRecord instruction.
(d) owner inthe CreateVoterWeightRecord instruction.
9. Within delegation_pool, has_reward_vault may be removed as it is duplicated by

contains_pool , resulting in redundancy.

Remediation

Ensure to eliminate the above-stated code items.

Patch

The code was removed.

© 2024 Otter Audits LLC. All Rights Reserved. 35/39

Switchboard Onchain Audit 05 — General Findings

Removal Of Unnecessary Code 0S-SVB-SUG-07

Description

1. Inthe GuardianRegister instruction, the guardian_queue account seems unnecessary. The
checkin GuardianRegister instruction may be directly performed between state.guardian_queue
and oracle.queue . Also, inthe OraclelInit instruction and the PullFeedInit instruction,
the stake_program account, stake_pool account, and reward_escrow account, respectively,
may be removed.

2. The oracle_min_stake, allow_authority_override_after,
require_authority_heartbeat_permission, require_authority_verify_permission,
require_usage_permissions, signer_bump,6and mint fields on QueueAccountData are
not utilized.

3. The flat_reward_cut_percentage, enable_slashing,and lut_slot fieldson State are

unutilized. Additionally, the stake_score field on OracleEpochInfo is not utilized.

4. The oracle_stats accounts are unnecessarily checked twice in parse_remaining_accounts
and validate functions in the PullFeedSubmitResponse instruction.

5. Inthe OracleUpdateDelegation instruction, utilize oracle.load()?.lut_slot instead of
params.recent_slot, and remove recent_slot from the input parameters.

>_ staking/src/instructions/initialize_stake_pool.rs

o
pub lut: AccountInfo<'info>,

Remediation

Remove the code instances mentioned in the above list.

© 2024 Otter Audits LLC. All Rights Reserved. 36/39

Switchboard Onchain Audit 05 — General Findings

Redundant/Unutilized Code 0S-SVB-SUG-08

Description

1. The secp_authority field on OracleAccountData.

2. Inthe PullFeedSubmitResponseMany and PullFeedSubmitResponseManyV2 instructions, the
FeedInfo structures are unnecessary since only the value field in it is utilized.
3. The reward_escrow accountin RandomnessReveal instruction.

4. The active_secp256kl_expiration fieldin RandomnessAccountData .

@]

. The signature_instruction_index, eth_address_instruction_index,k and

message_instruction_index fieldsin SecpSignatureOffsets.

6. The offsets fieldin ParsedSignatureData .

Remediation

Remove the above-listed code items.

Patch

The code was removed.

© 2024 Otter Audits LLC. All Rights Reserved. 37 /39

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

« Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

e Loss of funds requiring specific victim interactions.
« Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

o Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

« Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants.
« Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 38/39

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program'’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 39/39

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SVB-ADV-00 | Bypass Of Authority/Access Control Checks
	[8.75em][l]OS-SVB-ADV-01 | Failure To Add Delegation Pool To The Delegation Group
	[8.75em][l]OS-SVB-ADV-02 | Flawed Implementation of Reward Score Calculation
	[8.75em][l]OS-SVB-ADV-03 | Improper Account Utilization For Epoch Advancement
	[8.75em][l]OS-SVB-ADV-04 | Assignment Of Incorrect Reward Escrow
	[8.75em][l]OS-SVB-ADV-05 | Interruptions and Manipulations In RandomnessCommit
	[8.75em][l]OS-SVB-ADV-06 | Missing Oracle Checks In Pull Feed Instructions
	[8.75em][l]OS-SVB-ADV-07 | Failure To Include Offset Value In Signature Verification
	[8.75em][l]OS-SVB-ADV-08 | Ability To Update Signer Key
	[8.75em][l]OS-SVB-ADV-09 | Acceptance Of Expired Signatures From Expired Oracles
	[8.75em][l]OS-SVB-ADV-10 | Absence Of Oracle Account Validation
	[8.75em][l]OS-SVB-ADV-11 | Incorrect PDA Address Calculation
	[8.75em][l]OS-SVB-ADV-12 | Discrepancy In Account Type Handling
	[8.75em][l]OS-SVB-ADV-13 | Misalignment Of Implementation With Intended Approach

	General Findings
	[8.75em][l]OS-SVB-SUG-00 | Unsafe New Admin Assignment
	[8.75em][l]OS-SVB-SUG-01 | Misleading Error Logging
	[8.75em][l]OS-SVB-SUG-02 | Inconsistencies In Garbage Collection Implementation
	[8.75em][l]OS-SVB-SUG-03 | Denial Of Service On Exceeding LUT Limit
	[8.75em][l]OS-SVB-SUG-04 | Code Refactoring
	[8.75em][l]OS-SVB-SUG-05 | Code Maturity
	[8.75em][l]OS-SVB-SUG-06 | Unutilized Code
	[8.75em][l]OS-SVB-SUG-07 | Removal Of Unnecessary Code
	[8.75em][l]OS-SVB-SUG-08 | Redundant/Unutilized Code

	Appendices
	Vulnerability Rating Scale
	Procedure

